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Abstract

While the theoretical aspects of many graph algorithms are well understood, the practical application
of these algorithms imposes some problems: Typically, the implementation is bound to a specific data
structure, the results and their representation are predefined etc. On the other hand, since many graph
algorithms use other algorithms to solve subproblems, it is necessary to be able to freely choose the
input and the output and/or to modify the behavior of the subalgorithms.

Since the necessary freedom is normally missing from the implementation of graph algorithms,
a programmer of a complex algorithm is forced to implement algorithms in an appropriated way to
use them as subalgorithms. Thus, implementing complex algorithms becomes even harder resulting in
relatively erroneous implementations if complex algorithms are implemented at all. It would desirable
to have implementation of algorithms available which can be used as subalgorithms in a flexible way
and which can be applied to arbitrary graph representations.

This work introduces and discusses concepts to implement graph algorithms in a reusable fashion.
With reusable it is meant that an algorithm can be used with different graph data structures and/or
with modified behavior. To achieve this, components for an abstraction from the data structure are
introduced which allow using many different data structures as graphs. In addition it is shown how to
implement algorithms in a way which allows easy and flexible modification of their behavior.
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Chapter 1

Introduction

It is observed in [1] that in software design the wheel is continually reinvented. Thus it is proposed
to implement an “Algorithmic Tool Kit”. This Algorithmic Tool Kit is supposed to include graph
algorithms. Although the aim to create such a tool kit is clearly stated, the paper gives no insight how
this tool kit looks like: The exact approach how to implement such a tool kit is left open.

When writing software there are some important objectives to be achieved: Efficiency, correct-
ness, and reusability are the most common objectives. None of them can be completely ignored and
correctness is even essential. This work will provide a concept how to write reusable but still efficient
implementations of graph algorithms. The topic of provable correctness of the implementation is not
covered although the concepts given should still be applicable where provable correctness is required.

This chapter introduces the reasons for concentrating on reusability. It briefly reviews existing
approaches to implement graph algorithms and gives an overview of the concepts proposed. At the
end of this chapter an outline for the remainder of the work is given.

1.1 Reuse of Implementations

Often, different programs need similar algorithms and data structures to solve some problems. To
avoid implementing an algorithm multiply times, algorithms are implemented once and made avail-
able in a library which can then be used by any program needing an algorithm from the library. Ex-
amples for algorithms found in libraries are sorting algorithms, algorithms to solve linear equations,
or algorithms to compute an optimal solution of a linear program. There are several reasons to reuse
an algorithms rather than reimplementing it:

� For most algorithms it takes some expert knowledge to implement them. This already starts with
relatively simple algorithms like sorting algorithms: Although sorting algorithms are very basic
and topic of most beginner courses in computer science, they are sufficient complex to make a
lookup in a book necessary to find out the details. More complex algorithms will require more
knowledge about the domain, e.g. to guarantee numerical correctness or to be as efficient as
possible.

� Implementing any algorithm takes time. To get an algorithm implemented takes a programmer
which has to spend some time he/she has to be paid for. Thus, using an existent implementation
of an algorithm may save money if it is easier to use the implementation than reimplementing
the algorithm. For sufficient complex algorithms, e.g. finding an optimal solution of a linear
program, reuse of an existent implementation will always pay off. For simple algorithms it
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may depend on the interface provided to the implementation: If the implementation uses an
inconvenient or hard to use interface, it may be easier and faster to reimplement the algorithm.
In any case, using the same implementation wherever appropriate amortizes the costs of the
implementation between different projects reducing the costs of the individual projects.

� Initial implementations of algorithms are often erroneous. The description of the algorithm,
whether it is found in the literature or is developed by the programmer, may contain errors.
If the description of the algorithm is correct, the translation to a programming language may
introduce errors. Of course, an implementation which is reused may also contain errors but
because the implementation is (hopefully) often used, it is more likely that errors are detected
and can be corrected. An implementation which is only created for one application is more
likely to contain undetected errors as the implementation is not that often applied.

� When programming an algorithm for a library, this algorithm is the main concern. To make it
a good candidate for inclusion into a library it is not only tested thoroughly but also optimized
to be as efficient as possible. If some algorithm is implemented just to solve a problem arising
in some bigger context, this implementation is typically not optimized at all and often uses
a simple but not efficient algorithm. Thus, an algorithm taken from a library is often more
efficient than a special implementation solving the problem.

If this were the whole story, clearly every algorithm would be taken from some library. Unfor-
tunately, there are also problems with algorithms taken from libraries. An obvious problem are the
data structures used: The more complex the data structures are to represent the problem, the more
choices are available to design the data structure. To use an algorithm from a library the data structure
of the library has to match the data structure of the application somehow. An approach often taken is
to implement an algorithm for a certain data structure which has to be used to apply this algorithm.
In areas where there is a canonical representation, e.g. because the representation is efficiently sup-
ported by the programming language, this approach is sufficient. However, this not the case for the
representation of graphs which can be represented in many different ways with different trade–offs.

Another problem arising with implementations from libraries is the fact that the algorithm can
normally not be modified: Graph algorithms often extend the behavior of an existent algorithm by
making additional computations in each iteration of an algorithm, by adding another termination con-
dition, or by using a special initialization and so on. This requires that the behavior of an algorithm
can be modified making the design of the implementation hard: Often, additional flexibility is traded
for reduced efficiency e.g. because an additional function has to be called or additional conditions
have to be checked.

Despite these problems it would be highly desirable to have reusable implementations of graph
algorithms available: Most of the algorithms working on graphs are very complex and take a con-
siderable amount of insight into the problem domain to understand and implement them. Thus, it
seems to be logical to search for an approach to the implementation of graph algorithms alleviating
the problems encountered.

1.2 Existing Approaches

This section briefly reviews two existing packages: LEDA and SCOPE. The reason to review these
implementations is to identify common coding practice which hinders or enhances reusability.
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Library of Efficient Data types and Algorithms (LEDA)

LEDA [18] is a library implemented in C++ [23] providing several data structures and some combi-
natorial algorithms working on these data structures. The algorithms include graph algorithms and
algorithms from computational geometry. Here, only the graph algorithms are reviewed.

The data structures provided by LEDA include basic data structures like lists, arrays, stacks, etc.
as well as advanced data structures like dictionaries, hashes, and priority queues. The more complex
containers like lists and maps allow iteration over the elements stored in the container using items
corresponding to the container. An item identifies a current element in the container and can be used
for efficient access to the corresponding element. The items can also be used to find out the next or
the previous element etc. by passing them to a corresponding member function of the container.

Fundamental to the implementation of the graph algorithms is a graph data structure representing
a directed graph which serves as a base class for several other graph data structures to create e.g.
undirected graphs. For all flavors of graphs there is a “parameterized” version which allows to use
arbitrary classes as node or edge weights. For the directed graph it is not possible to access the set
of edges incoming to a node efficiently: Only the outgoing edges are stored in the adjacency list.
Undirected graphs are modeled by using directed graphs where for every edge

���������
in the graph the

edge
���	���
�

is also part of the graph.
The graph data structure is a class called graph used as base class for all variations of graphs.

The graph algorithms in LEDA take a graph as argument together with some additional arguments.
To access the set of nodes or the set of edges of a graph, objects of the classes node and edge,
respectively, are used. The use of these classes is similar to the use of items for the containers. The
edges are also used to access the edges incident to a node.

To allow different data to be associated with the nodes, node arrays are used for additional data.
These arrays are indexed using nodes. Likewise, additional data for edges is stored in edge arrays
indexed with edges.

One problem immediately arising when using LEDA is the fact that the algorithms only work with
the class graph or a class derived from graph. Due to the style the class graph is implemented
it is not sufficient to derive from this class to use a completely different representation, e.g. a grid
graph. To use a representation different from the graph data structure provided by LEDA, it would be
necessary to implement a new class graph with a different representation.

When applying an algorithm which takes some node or edge data as input, it is necessary to repre-
sent this data explicitly as a node or an edge array, respectively. It is not possible e.g. to calculate the
data on the fly if the data is accessed. It is also not possible to apply an algorithm to the parameterized
version of the graph and use a member of the node or edge parameters: If the input data is represented
as a member of the node or the edge data, it is still necessary to copy the data into a corresponding
array. Likewise, it is not possible to choose the representation of the output: If the output involves
data stored with every node or every edge a corresponding array has to be passed to store the data.

It is also worth to note that the algorithms cannot be modified: The algorithms are implemented
in a monolithic fashion calculating the data which was considered important when the algorithm was
implemented. Depending on the algorithm, this may be to few data, rendering the algorithm useless
for some applications, or too much data resulting in wasted time for the calculation of data not used.

Looking through the sources reveals that the LEDA algorithms rather implement an algorithm
tailored to a specific use than reusing the corresponding algorithm made available to the user of LEDA.
This especially holds for graph search which is reimplemented in many of the algorithms. Although
it can be argued that graph search is a very simple algorithm not worth reusing, it also takes time to
implement graph search and even for such simple algorithms it is possible to introduce errors.
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All together it appears that there are three factors which hinder reuse of LEDA graph algorithms:

1. It is hard to apply LEDA’s algorithms to different graph representation than the graph represen-
tation provided by LEDA.

2. There is no choice for the representation of additional data for the nodes or the edge: It is always
necessary to use the corresponding array class.

3. There is no way to modify the behavior of most of the algorithms.

It should be noted that the main concern of LEDA was to create efficient implementations of data
structures and implementation. Thus, the main concern was not to allow application of LEDA al-
gorithms to arbitrary data structures or to allow modification of the algorithms. LEDA is currently
used in several projects (see http://www.mpi-sb.mpg.de/LEDA/www/projects.html for further infor-
mation). This indicates that LEDA promotes some reuse.

Simple Combinatorial Optimization Programming Environment (SCOPE)

SCOPE [11] is an environment programmed in Object Pascal to solve maximum–flow problems. The
basic idea of SCOPE is to implement algorithms in terms of abstract data types and abstract operators.
An abstract data type is a data structure supporting a predefined set of operations modifying the data
structure without defining the implementation of the data structure. A well known example of an
abstract data type is a stack: The operations and the semantic of the operations are defined but the
implementation of this data structure is left open.

Abstract operations are operations applied to a data structure without defining the implementa-
tion but only the semantics of the operation. This allows to implement several different operations
performing the same logical operation in different ways and using different data structures. The ab-
stract operations in SCOPE are used to create a unified framework for the different algorithms solving
the maximum–flow problem: By instantiating the framework for the maximum–flow algorithm with
different abstract data types and abstract operations, the different algorithms are created.

Since algorithms in SCOPE are implemented in terms of abstract data types and abstract opera-
tions it is possible to use an arbitrary representation of a graph and to add behavior to an algorithm
(by placing the additional behavior into an abstract operation). The major drawback seems to be the
relative high–level definition of the abstract operations. The abstract operations mentioned in the cited
paper are something like AUGMENTING SUBGRAPH which creates a graph with edges having free
capacity relative to some flow or PATH which looks for a path between to nodes. Unfortunately, the
only information about SCOPE available to me is the paper cited above.

1.3 Outline of the Approach

The approach proposed uses two major, complementary concepts: First, to allow application of algo-
rithms to different representations, an abstraction from the representations fulfilling some fundamental
requirements of the algorithms is used. The idea is to implement algorithms completely independent
from any data structure concentrating on the properties of the algorithm. When algorithms are imple-
mented, certain requirements on the data structure will arise. To make a data structure eligible for an
algorithm, the data structure has to fulfill the requirements.

Instead of accessing the graph representation directly, an indirection forming an abstraction is
used to access the graph representation. The abstraction for graphs uses two kinds of iterators (i.e.
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object which can be used to successively access each element from a collection) to provide access to
the set of nodes and the set of edges. In addition, to find out which nodes are adjacent or which edges
are incident to a given node, another kind of iterators, call an adjacency iterator, is used. To allow use
of data associated with the nodes or the edges of a graph, an entity called a data accessor is used.

These abstraction allow non-modifying access to graphs. There are some algorithms using auxil-
iary modifications. Such modifications can be simulated using the four abstraction for non-modifying
accesses without really modifying the graph representation using a concept called a mutator. To allow
modifications of the graph representation the design pattern “builder” can be used [12]: This allows
modification of a structure without hard–coding the methods to perform the modifications.

The first part of the approach focusses on the abstraction from the representation. The second part
is concerned with a flexible implementation of algorithms. To make the implementation of algorithms
more flexible, algorithms are implemented as classes (which is similar to SCOPE where the abstract
operations are also classes). This allows the creation of abstract algorithms which can be used as
different phases of an algorithm and replaced by different implementations potentially tailor to a
specific problem or graph representation.

This is still not sufficient to allow changed behavior of algorithm. To allow easy modification of
algorithms, loop, algorithms which include a are implemented in a fashing which lets apear them as
being turned inside out. The algorithm is implemented as a class similar to an iterator: It identifies a
current state of the algorithm and allows to stepwise move over the different states encountered during
the excution of the algorithm. Such an implementation of an algorithm is called a loop kernal and
allows to perform additional action in each iteration of the algorithm and to use a modified termination
condition (plus several other features).

Before discussing the approach to the implementation of graph algorithms, the basics of the prob-
lem domain considered are defined in the next chapter. In Chapter 3 a brief outline of general ap-
proaches to reusable software is given. A thorough discussion of the various concepts for the imple-
mentation of reusable graph algorithms is given in Chapter 4.
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Chapter 2

Problem Domain

Although the concepts used to approach the problem of writing reusable software can be applied
to other areas, too, this work is mainly concerned with algorithms working on (finite) graphs. In
particular implementations of algorithms solving the maximum–flow problem, and related algorithms,
are investigated. This problem area is well understood from a theoretical point of view and thus
makes up a good candidate to investigate practical problems. This chapter provides some theoretical
background used in later chapters.

2.1 Basic Definitions

This section defines and discusses the basic objects from algorithmic graph theory considered in this
work: graphs, paths, trees, etc. The objects defined are well known. However, the definitions are dis-
cussed with a view on practical aspects: The theoretical point of view is sometimes quite impractical.

Graphs

The main focus is directed towards algorithms working on graphs. An undirected graph ��� ��� ��� �
is a pair consisting of a finite set

�
of nodes and a set

���
	�	 � ������ � ������� ������ ���
of edges.

A directed graph ��������� ��� ����� ��� ����� � is a pair consisting of a finite set
� ����� of nodes and a set� ����� �������

of edges. Of course,
�

and
� ����� are also finite because they contain at most � ��� �!� " �

and � ��� � ����� � " �
objects, respectively. Here only finite graphs are considered, i.e. graphs where the

number of nodes and the number of edges are finite. This is no real restriction from a practical point
of view: It would be impossible to explore an infinite graph completely in finite time anyway.

Two nodes
�����#�$�

are said to be adjacent, if there is an edge %!� 	 �������&�'�
. The edge %

is said to be incident to the nodes
�

and
�

. Often algorithms refer to all nodes adjacent to a certain
node

�(�'�
: The set )+*-, ��� � � 	 �.�'�/� 01	 � ����&�2�3�

is called the adjacency list1 of
�
. The set46517 ��� � � 	�	 � ��81�9�:�;�

is made of the edges incident to the node
�
. The degree *+<�= ��� � � � 46517 ��� �>�

of a node
�/�&�

is the number of edges incident to
�

.
Likewise for directed graphs: The two nodes

� ���
�?� ����� are said to be adjacent, if there is an
edge %@� ��� ��� �!��� ����� or an edge %&� ��� ���
�!�A� ����� . The edge % is said to be incident to the
nodes

�
and

�
. The set )B*�, ���
� � 	 ���:� ����� � 0 ���������C��� ����� �

is called the adjacency list of
�
. The

directed edge %D� ���������
is thought to be directed from node

�
to node

�
and is depicted in drawings

1The term adjacency list actually refers to a certain graph representation. However, it is convenient to think of the setEGF6H�IKJML of nodes adjacent to a node J as a list of nodes even if a graph is represented differently.
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of graphs as an arrow leading from the point representing the node
�

to the point representing the
node

�
. The node

�
is called the tail and the node

�
the head of the directed edge % . An edge

%D� ���������
is an outgoing or leaving edge for node

�
and an incoming or entering edge for node

�
.

It is useful to name the sets of incoming and outgoing edges: The set
465 ���
� � 	 ������8 � �@� ����� �

is the
set of directed edges leading towards

�
, and the in–degree

465 *+< = ���
� � � 4 5 ���
�>�
is the number of these

edges. Analogously, the set ����� ���
� � 	 ������8 � ��� ����� �
is the set of directed edges leaving

�
, and the

out–degree ����� * <�= ��� � � � ����� ���
�>�
is the number of these edges. The set

46517 ���
� � ����� ��� ��� 465 ��� �
are

the edges incident to the node
�

and the degree 	�%�
 ��� � � � 46517 ���
�>�
is the number of edges incident to�

.
The two definitions for directed and undirected graphs are similar to the ones widely used. Unfor-

tunately, the definitions of graphs are quite restricted, and some situations arising in practical problems
are not covered:

� For many applications it makes no difference whether the graphs are directed or undirected, and
sometimes it even makes sense to have graphs with a mixture of directed and undirected edges
in the same graph, e.g. when modeling a system of streets where some streets are one–ways.

� It is impossible with the given definitions to have loops: Edges which are incident to just one
node. Although the definition of the directed graph can be easily modified to allow loops (just
allow edges

��� ��� �
for

� ���
), this is not that easy for the undirected case: The edges could

not be sets with exactly two elements and denote a loop. Making them pairs would impose an
order. Using a set with just one element to denote a loop would require a conditional notation
whenever an edge is selected. Any choice makes the handling of edges more complex.

� The definitions do not allow parallel edges, i.e. two or more distince edges incident to the same
two nodes and which have the orientation in the case of directed graphs. Apart from additional
modeling freedom, parallel edges are simply present in many graphs encountered in practice or
are introduced by algorithmic treatment of the graph.

A graph (whether directed or undirected) is called simple if it does not contain loops or parallel
edges. With the definitions given above, all graphs are simple. However, representations of graph
often provide more freedom such that it is e.g. possible to have parallel edges. Restricting the discus-
sion to simple graphs may be suitable for theoretical work. This allows for example to make use of
the fact that

� �/�1� � ��� �/� " �
, which results in less complicated estimations on the required resources.

However, an implementation of an algorithm should be able to cope with non-simple directed graph
and undirected graphs as well as with graphs with mixed directed and undirected edges. Only in situ-
ations where a restriction is really necessary to make the algorithm work, the implementation should
assume the corresponding restriction to be fulfilled.

The following definitions will use directed graphs only. The corresponding definitions for undi-
rected graphs are essentially equivalent differing only in the way individual edges are handled: The
corresponding definitions are omitted because it would basically be a repetition of the definitions for
directed graphs with only minor modifications.

It is convenient to speak of modifications made to graphs instead of using the more rigorous ab-
stract notation. The difference is basically to see a graph as a concrete object which is modified
instead of an abstract entity. The view of a graph as an object is also closer to the view in implemen-
tations where the representation is normally really changed instead of creating a new graph differing
in some aspect from another one. Inserting the node

�
into a graph �
� ��� ��� �

means to replace
the graph � by the graph

�����:	 � � ��� �
. Correspondingly, inserting the edge % where % � ���������
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with
� ��� � �

, means to replace � by the graph
��� ��� ��	 % � �

. Removing the node
� �(�

from the
graph � � ��� ��� �

means to replace the graph � with the graph
��� � ��� � �

where
� � � ����	 � �

and� � � 	 ��� ��8 � � �/� � ��8��� � �
. Removing the edge % � �

from the graph � means to replace � by the
graph

��� ������	 % � �
. Inserting or removing sets of nodes or edges means to apply the corresponding

operation with all elements from the set.
An elementary contraction removes two adjacent nodes

�
and

�
and inserts a new node

���	��

which is adjacent to all nodes which were adjacent to either

�
or
�

: Formally, the graph � � ��� ��� �
with

� ��� ���
and

	 ��� ��� � � ���	��� � �� � ���� is replaced by the graph
��� � ��� � �

where
� � � 	 � �	��
 � � ���

	 � ����
and

� � 	 ��� ��8 � � �!� � ��8!��� � � �!	 ��� ����
 ��8 �>� ��� ��8 � � ��� ���	��8 � � �3� � 	 ��� ��� �	��
 �>� ��� ���
� �
��� ��� ������ �;�

. This modification is fairly complex and causes yet another problem: Most often,
it is an auxiliary modification applied by some algorithm which has to be undone at the end of the
algorithm. As there are normally multiple contractions used in such an algorithm (fortunately, there
are only few algorithms needing such a modification), keeping the trace of all modifications can
become rather complex.

Substructures of Graphs

A subgraph of a directed graph � � ��� ��� �
is a graph � � � ��� � ��� � �

with
� � �A�

and
� � � 	 %���� ��� �9�?�!� � ��� ��� � �

. The graph � � is called the subgraph of � induced by
� �

, if
� � � 	 % ���� ��� � � �!� � ��� ��� � �

. A subgraph � � � ��� � ��� � �
is a spanning subgraph if

� � � �
and

� � �'�
.

A typical application of subgraphs is to construct an auxiliary subgraph from a graph to solve
a problem on a graph with some known properties: Either the solution on the subgraph provides
a solution on the whole graph or multiple subgraphs are constructed until the original problem is
solved. Dinits’ algorithm presented in Section 2.2 (on page 24) is an example of such an algorithm.

Let �.� ��� ��� �
be a directed graph and

� ���
�?�
two nodes. A path from the start node

�
to

the end node
�

in � is a finite sequence � � � %�� ������� � %�� � , % � ���
for � � � ������� �"! , of edges with

% � � ��� �$# � ��� � � or % � � ��� � ��� �$# � � for � �%� ������� �"! where
� � �&

and
� � � � : Two successive edges

are incident to the same node, the first edges is incident ot
�'&

, and the last edge is incident to
� � . A

directed path is the same as a path except that the directions of the edges are taken into account, i.e.
% � � ��� ��# � ��� � � for � �(� ������� �"! . Note, that the definition of a path does not take the direction of the
edges into account. This is only the case for a directed path.

Often paths are defined and represented as sequences of adjacent nodes. This is insufficient to
uniquely identify a path if a graph is allowed to have parallel edges. This is no problem with the
definitions of graphs given above but is a problem for some graph representations used in practice.
In addition, even if there are no parallel edges, it is not suitable to represent a path as a sequence of
nodes in an application where the edges are to be accessed: It would be necessary to find the edge
between two successive nodes

� ��# � and
� � which is not efficient for some graph representations. From

a theoretical point of view, the definition of a path as a finite sequence of adjacent nodes is equivalent
to the definition given above if the graph has no parallel edges.

A path � using each node only once, i.e.
� � �� �*)

for � ��+��'	�,
������� �"!1� � � �� + , is called a simple
path. If the start node and the end node of a path - are identical, the path - is called a circle. A
simple circle -�� � % � � % " ������� � %*� � is a circle where

� % " ������� � %*� � is a simple path.
Using the concept of paths, it is possible to define the connectivity of graphs: A graph ��� ��� ��� �

is said to be connected (disconnected otherwise) if for every pair of nodes
����� � �

there is a
path from

�
to

�
in � . A connected subgraph � � � ��� � ��� � �

of a graph ��� ��� ��� �
is called a

connected component if � � is induced by
� �

and the graph induced by
� � �&	 � �

is disconnected for
every

� ��	 ���C� � �
. Obviously, a connected graph is the only connected component of itself. For
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most graph algorithms, the graph must be decomposed into connected components before using the
algorithm. The algorithm is then applied to each of the connected components.

Some algorithms make use of even stronger knowledge of the connectivity: A graph �A� ��� ��� �
is
!

-connected, if at least
!

or more nodes have to be removed from � to make the graph disconnected.
The graph search algorithm from Section 2.2 can be used to find a connected component. On page 17
an algorithm finding � -connected or biconnected components is given.

A tree � � ��� ��� �
is a connected graph without cycles. Thus, in � there is exactly one path

between every two nodes
����� �@�

. If a spanning subgraph ��� ��� ��� � �
of ��� ��� ��� �

is a tree, � is
called a spanning tree of � . The spanning tree � partitions the set of edges

�
of � into the set

� �
of

tree edges and the set
� � � �

of non–tree edges.
A rooted tree

� � ��� � � ��� � is a tree � � ��� ��� �
with a specially designated node

� � � ��� �:�
, called

the root of � . Using the root, a direction can be defined for all edges in the tree: If the unique path
from the root

� � � ��� to every other node
�9��� � 	 � � � �����

is a directed path, the tree is called an out–tree.
If the unique paths from each node

�/�@� � 	 � � � ��� � to the root
� � ����� are directed, the tree is called an

in–tree. When using rooted trees, often a parent/child relationship is assumed: Let � � � % � ������� � % � �
with % � � ��� � ����� � � � and with % � � ���������

be the unique path from
� � ����� to the node

�
. The node

�
is

called the parent of
�

and
�

is a child of
�

. All nodes incident to an edge in � except
�

are called
ancestors of

�
. All nodes which have the node

89�@�
as ancestor are called the descendents of

8
. A

node without a child is called a leaf while the other nodes are called internal nodes.
Spanning in–trees share the same problem as paths: They can easily be represented by storing for

each node the parent node, at least if it is sufficient to traverse through the tree from leaves towards the
root. However, this representation does not uniquely define the connecting edge in the corresponding
graph if there are parallel edges. Thus, for every node different from the root, an edge leading to the
parent has to be stored.

In general, a graph without any cycle is called a forest: Each of the connected components forms
a tree, i.e. the graph is a set of trees.

Special Classes of Graphs

Graphs as defined above are too general for some applications. Instead specific subsets like planar
graphs (see below) may be used in applications because they are adequate or sufficient models for the
application. Some problems formulated with graphs can be solved more efficiently when the graph
has a special structure. In addition, there are some special representations which make use of the
properties of the graph classes or which allow efficient access to the special properties. Thus, it is
suitable to handle classes of graphs differently when appropriate.

A very simple special class are the complete graphs: The undirected graph � 
 � ��� ��� �
is the

graph with �'� � �9�
nodes where each node is adjacent to every other node, i.e.

� � 	�	 � ������� ������� �����A���3�
. The � 
 is obviously the undirected graph with � nodes which has the most edges (if

there are no parallel edges allowed). More precisely, the � 
 has

	� 
 # ��
" edges.

A bipartite graph � � ��� ��� �
is a graph whose nodes can be partitioned into two sets

� � and� " such that
� � �@� " � �

and there is no % � ��� ��� � � �
such that

����� � � � or
� ���#� � " , i.e. a

bipartite graph is a graph on two sets of nodes where there are only edges connecting these two sets of
nodes. The complete bipartite graph � 
	�  � ��� ��� � � ��� � �!� " ��� �

is the graph with ����� nodes
partitioned into the set

� � with
� � � � ��� and

� " with
� � " � ��� where each node from

� � is adjacent
to every node in

� " . Thus,
� � 	�	 ��������� � ��� � ��� �&� " �

.
A generalization of bipartite graphs are layered graphs: A graph � � ��� ��� �

is a layered graph
if the following two conditions hold:
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1.
� ��� ��� � ������� � � � �

2. � % � ��������� � �
:
�9��� � and

�A��� ��� �
In other words, there exist

!
layers, the sets

� � , � � � ������� �"! , and there are only edges between two
successive layers. Layered graphs are used e.g. by Dinits’ algorithm (see Section 2.2, page 24).

An important class of graphs are planar graphs. An informal definition of a planar graph is this:
A graph is called planar if it can be drawn in a two–dimensional (Euclidean) plane such that no two
edges cross (or intersect each other). This (topological) definition is not well suited for algorithmic
treatment. Instead, a definition using a combinatorial embedding is used for algorithmic treatment.

A combinatorial embedding of an undirected graph � � ��� ��� �
is a cyclic order of the edges

incident to the node
�

for every node
� � �

. A face in the combinatorial embedding is formed
by a cycle - which is constructed such that the edge %�� 	 �������

is immediately followed by the
edge ��� 	 �	�
	 �

(
	 ��� ��� � � � % � � �>� �

) in the cycle if and only if
	 � �����

is followed immediately
by

	 �	�
	 �
in the cyclic order of node

�
. A combinatorial embedding is a planar combinatorial

embedding if the formula
� �/���@� �/� �� � ��� holds, where � is the number of faces in the embedding

and � is the number of connected components of the graph. A planar graph is a graph for which
a planar combinatorial embedding exists. It was shown that this combinatorial definition of planar
graphs is equivalent to the topological definition above [7].

2.2 Algorithms on Graphs

This section presents some algorithms working on graphs. The algorithms presented are well known
and solve problems which frequently arise as subproblems when solving more complex problems.
The goal is not to develop new algorithms but rather to present algorithms in a way which is close to
an implementation.

The algorithms presented in this section are used to identify the access methods which have to be
provided for a graph representation to allow an efficient implementation of an algorithm. In addition,
the reuse of algorithms as subalgorithms for more complex algorithms is demonstrated. This yields an
insight in which way implementations need to be flexible: The necessity to have a flexible control on
initialization and termination for an algorithm will be shown as well as the use of algorithms solving
a relaxed problem. It will also be shown that it is useful to be able to augment the behavior of an
algorithm with additional actions.

A Basic Algorithm: Graph Search

Graph search is a generic term for an algorithm accessing every node in a connected component of a
graph. Its definition already yields many degrees of freedom: See Algorithm 2.1 for a definition of
graph search as found in [21]. The authors claim that this algorithm runs in � ��� �!� �

time.
In this formulation, � is a set used to maintain a list of nodes. This algorithm and its proof rely

on the basic property that a set can contain every element just once, i.e. if an element already present
in a set is added to the set, there is still only one copy stored in the set after the addition. If �
is implemented to maintain this set property, this algorithm performs with the claimed time bounds
(provided that the basic operations on � perform in constant time). Note that it is necessary to couple
the implementation of the set with something like a queue or stack to gain additional properties of the
search (see below).
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Input: A graph � , represented by its adjacency lists; a node
� �

Output: The same graph with the nodes reachable by paths from the node
� � “marked”

��� � 	 � � �
while � �� � do

let
�

be any element of �
remove

�
from �

mark
�

for all
� � ��� 	 + ��� � do

if
� �

is not marked then
add

� �
to �

end if
end for

end while

Algorithm 2.1: Graph Search: A basic outline

The problem with the set property leads towards an issue of correctness of implementations: In
[21] on page 195 the set � is implemented as a queue using an array where “add

�
to � ” is imple-

mented as “
� ����� � � � ����� � �
	 ��� � ������ � � �

” and “remove
�

from � ” is implemented as “first := first +
1; v := Q[first]”. This does not yield the claimed time bound! Instead, with this implementation, the
algorithm takes � ��� �/� � �

time when the algorithm is applied to a � 
 , the complete graph on � nodes:
In the first iteration, all nodes except

� � , the initial node, are inserted in the queue. The only node
marked is

� � . Thus, at the end of the first iteration, the queue contains the nodes
� " ������� ��� 
 . In the

second iteration,
� " is extracted from the queue and marked. In the inner loop all nodes adjacent to� " , i.e. � � � nodes, are investigated and all but the nodes

� � and
� " are added to the queue: None of

the nodes
� � ������� ��� 
 is marked. Thus, at the end of the second iteration the queue contains the nodes� � ������� ��� 
 ��� � ������� ��� 
 : The nodes

� � ������� ��� 
 are present twice in the queue: The implementation of �
given has no way to avoid duplicates in the queue. In the � -th iteration, for ��� � , there are � � � nodes
examined and the nodes

� � � � ������� ��� 
 are added to the queue: Only the nodes
� � ������� ��� � are marked at

this point. If ��� � no node will be added to the queue because all nodes are marked. But all adjacent
nodes, i.e. as many as � � � nodes, will be examined. Thus, the total amount of time required can
be calculated as the number of nodes put in the queue times the number of nodes adjacent to the
respective node, which is always � � � for the nodes of � 
 :

� � � � �
��

� � 
 # � �
� � � � � �

� � � � � � �
�

� � � � � � � � � � � ��
� � � � � �

But � � � ���� � � � " � ��� ��� �/� " � ��� ��� �/� �
.2 Thus, the time bound given in [21] is not achieved for

the implementation of � given. �
It is no problem to correct the algorithm to perform with the desired time bound. All what is

necessary is to make the execution of the inner loop dependent on the mark of the node
�

: If this loop
is only executed if

�
is not yet marked, the algorithm has the desired bounds. The major problem with

this error is that it only yields a worse execution time than the expected one: The results calculated
are correct. In a normal testing procedure for the algorithm the error will probably not be detected if
no profile of the execution time is made.

2The equality � I�� ��� ��L! � I�� "#� L holds because the number of edges is quadratic in the number of nodes for the $#% .
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This little digression is not taken to blame the authors. Instead it demonstrates that it is possible to
make errors even when implementing a simple algorithm like graph search. Thus, it is worth reusing
an implementation of such a simple algorithm, too: One of the reasons for reusing code is to avoid
errors introduced by a new implementation.

But let’s get back to the graph search. In every iteration one node, in the above formulation node�
, is treated special. This node is said to be the current node. The current node is used to determine

which nodes are to be investigated and potentially put in the set � . If the edge
��� ��� �

of the current
node

�
and an adjacent node

�
is put in the set instead of just the node

�
, a graph search can be

used to create a spanning tree of the connected component of
� � : Instead of a single node

�
, the edge��� ��� �

is selected from the set � . The node
�

becomes the parent of
�

in the spanning tree if
�

is not
yet marked. The edge

��� ��� �
can e.g. be used to record the parent of a spanning tree with

� � as root.
Whether or not the tree is actually created, this tree is henceforth referred to as the implicit tree of
the graph search.

With this approach there is just a minor problem: � is initialized with a node, not with an edge.
An option to avoid this problem in an implementation is to use special edges: There can be a special
representation for non-existing edges e.g. a pair which consists of a node and an indicator for an
invalid node (like “ ����� ”). Thus, initially an invalid edge can be stored to indicate that the node is the
root of the implicit tree. The notation

� ����� ���
� will be used in the description below to indicate an
invalid edge used to store a node

�
.

The algorithm as presented above (if corrected) provides some flexibility in the output created:

� The implementation of � is left open. Using different implementations for � , it is possible to
get different characteristics of the implicit tree. Two well known choices for � are a queue and
a stack resulting in a breadth first search (BFS) or a depth first search (DFS), respectively (see
below).

� The marks used are not specified. For a graph search used to check whether the graph is con-
nected, boolean marks would be sufficient. It is also possible to use ascending numbers to label
the nodes with numbers indicating the order in which they became current. Yet another choice
for the marks is to use “version numbers” to use the same marks for multiple searches without
having to initialize the marks: Each individual search uses a number bigger than the previous
number used to mark the nodes. Nodes marked with a smaller number than the currently used
number are considered to be unmarked.

The set � is used to store the nodes which are eligible for investigation. From a theoretical point
of view this can be a set where the next node to become current is chosen randomly. From a practical
point of view, it often makes more sense to use a different strategy than random selection. Thus, the
set � is actually a container defining an order on the nodes inserted.

One approach already mentioned is to use a queue to implement this container: The nodes are
extracted from the queue in the same order in which they are inserted into the queue. A queue is
sometimes called a FIFO: “First In First Out”. When using a queue for � , the implicit tree grows
apparently into the breadth such that a graph search using a queue is called a breadth first search or
BFS for short. It can be shown that a path from the root

� � to a node
�

in the implicit tree generated
by a BFS is a shortest path with respect to the number of edges from

� � to
�

in the input graph.
The other approach mentioned is to use a stack to implement the container: The nodes are ex-

tracted in the reverse order in which the nodes currently stored in the container are inserted. Thus, a
stack is also called a LIFO: “Last In First Out”. The implicit tree when using a stack grows apparently
into the depth and the corresponding graph search is called depth first search or DFS.
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Some of the potential flexibility of graph search is not explicit in the formulation above. Here are
some of the things which could not be made with Algorithm 2.1:

� There is no reason why there should not be more than one root node. For example, if the shortest
path from one of multiple start nodes

� � ������� � � � to a given end node
�

has to be determined, it
could be useful to put the nodes

� � ������� � � � as roots of the graph search in the container � .

� Often it is useful to perform additional actions in each iteration of the algorithm: For example,
the parent in the implicit tree has to be recorded to explicitly construct this tree or the node has
to be labeled with some label.

� In some applications of the graph search algorithm, it is important to access all edges. This is
e.g. necessary for the biconnectivity algorithm presented below. Algorithm 2.1 only marks the
nodes although it accesses all edges. Like for the nodes, it is useful to allow an arbitrary action
for every edge.

� The condition when the algorithm terminates is fixed: The graph search terminates once all
nodes are removed from the container. A different termination condition useful e.g. for a path
search algorithm (see below) is to terminate once a certain node became current.

� The algorithm asks for a graph represented as a set of adjacency lists. This is not really neces-
sary. All what is necessary is that the nodes adjacent to a given node can be accessed efficiently
(this restriction can be further relaxed: Efficient access is only necessary to make the graph
search algorithm run as efficient as possible).

Thus, it makes sense to reformulate the algorithm to make use of this additional flexibility. See
Algorithm 2.2 for a more flexible formulation of graph search.

Input: A graph ��� ��� ��� �
, with efficient sequential access to all elements of � � � ��� � for

��� �
; a

set of nodes
� � ������� ��� � ���

Output: The graph � with the nodes “marked” which are reachable from at least one of the nodes� � ������� ��� � .
Add the invalid edges

� ����� ��� � � ������� � � ����� ��� � � to �
while � is not empty and termination condition not yet reached do

let
��� ���
�

be the next edge from �
remove edge

��� ���
�
from �

if
�

is not yet marked then
optionally perform some additional action for

��� ���
�
mark

�
for all

������� � � � 4 517 ���
�
do

optionally perform some action for edge
��� ��� � �

if
� �

is not marked then
add edge

������� � �
to �

end if
end for

end if
end while

Algorithm 2.2: Graph Search: Full flexibility
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� is a container of edges (including the illegal edges). Let
��� ���
�

be the object most recently
extracted from � . The node

�
is the node which becomes the new current node. The object

�
is either

����� , or some node: If
� � ����� , the node

�
is one of the root nodes of the graph search. Otherwise,

i.e.
���� ����� ,

�
identifies the parent node of

�
in the implicit forest (there are, potentially, multiple

root nodes, thus there is no connected spanning tree but rather a set of implicit trees) of the graph
search. The edge

��� ���
�
is the tree edge leading from the parent node

�
to the node

�
.

This formulation is a little bit more complex but much more flexible. Using the concepts from
Chapter 4 the interface to an algorithm implemented corresponding to the formulation in 2.2 can be
made easy while making the implementation itself even more flexible: As formulated in Algorithm
2.2 there may be � ��� �!� �

edges stored in the container. With a slight modification it is possible to
reduce this amount to � ��� �9� �

, at least in some situations: This can be essential if
� �/�

is large and the
graph is nearly complete. The idea is this: The inner loop inserts each edge incident to the current
node which leads to a node not yet marked. This is not always necessary: If not all edges have to be
known to the container to determine the next edge, it can be sufficient to store just the information
to find all edges incident to a node. This information can then be used when an edge is extracted to
determine the next edge. Instead of removing the edge, the information stored is updated to indicate
that the current edge is removed and only subsequent edges are to be considered. This is done until
all edges incident to a node are processed. At this time the information stored is removed. Thus, the
inner loop is moved into the container � : If the container needs to know about all edges (as is e.g. the
case for a priority queue) the information passed to the container is used to insert all edges incident
to the current node. Otherwise, the information is used to obtain the next edge whenever an edge is
removed from the container.

With the graph search algorithm as given in Algorithm 2.2, Dijkstra’s algorithm is a simple spe-
cialization using a priority queue as container. To make this possible, the priority queue has to be
extended to record the distance of a node if an edge to a not yet marked node is extracted from the
container: The length of the edge and the distance of the parent node is known (for ����� it can be
defined to be zero) such that the distance of the not yet marked node becomes the length of the edge
plus the distance of the parent node. This value has to be calculated anyway because it is used for the
sorting criterion of the priority queue.

The graph search algorithm accesses all edges incident to a given node. Thus, it is necessary for
a graph representation allowing the application of the graph search algorithm given above to provide
(efficient) access to the adjacency list of a node.3 In addition to this access, the algorithm marks the
nodes and checks whether a node is marked. In other words, an implementation of this algorithm
needs to store and retrieve auxiliary data associated with the nodes.

Finding Paths

A problem arising in some situations is to find a path between two nodes in a graph: Given a graph
��� ��� ��� �

and two nodes
� � � ���

, find a path from the node
�

to the node
�

in � .
A general approach to solve this problem is to use a graph search to find the path. The search

is started at node
�

and proceeds by recording for the current node the parent node in the (partial)
implicit tree until the node

�
is marked. The graph search can terminate as soon as

�
is marked or

when the first edge
����� ���

, is put in the container.4 Algorithm 2.3 shows an algorithm extending graph

3If the graph contains parallel edges, it is not sufficient to have access to the nodes adjacent to a node: In this case it is
necessary to provide access to the edges incident to a node.

4The reason to wait until the node
�

is marked instead of terminating the algorithm if the first edge IKJ�� � L is put in the
container is to make sure that the last edge has the properties obtained for the edge by the specific choice of the container.
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search (Algorithm 2.2) to find a path in a graph.
The extension mainly consists of three parts:

1. Whenever a node is marked, the edge leading to the parent node in the (partial) implicit tree is
recorded.

2. If the target node
�

is reached, the algorithm constructs the path by traversing the implicit tree
from the node

�
to the root

�
and adding the edges used to the path. When the path is constructed,

the algorithm terminates by returning the path.

3. If the graph search terminates without reaching the node
�
, an empty path is returned to indicate

an error: There is no path from the node
�

to the node
�

in � .

Input: A graph ��� ��� ��� �
, with efficient sequential access to all elements of � � � ��� � for

��� �
; a

start node
�D���

; a target node
� �@�

Output: A path � � � % � ������� � %�� � from
�

to
�

in � or an error indication
add the invalid edge

� ����� � � � to �
while � is not empty do

let
��� ���
�

be the next edge from �
remove edge

��� ���
�
from �

if
�

is not yet marked then
set � )���< 5 � ���
� � � ��� ���
�
mark

�
if
� � �

then
set � � � �
while

���� �
do

let
��� ���
�

be � )���< 5 � ���
�
set � � � ����� ��� � � � �
set

� � � �
end while
return �

end if
for all

������� � � � 4 517 ���
�
do

if
� �

is not marked then
add edge

������� � �
to �

end if
end for

end if
end while
return

� �

Algorithm 2.3: Path finding using graph search

This algorithm does not cover all situations as efficiently as possible (from a practical point of
view): For example, the edges to the parent nodes are always stored although this is not necessary if
a stack is used as container. If a stack is used, the stack contains the path from the root node to the

This can be an issue e.g. if a priority queue is used as container.
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current node in reverse order. Thus, in this case there is no need to store the edge to the parent with
every node.

Another issue is the construction of the path: The construction of the path returned requires mem-
ory for data already stored. Whether the stored data, i.e. the edges of the in–tree which can be used to
traverse the path in reverse order (from node

�
to node

�
), is sufficient for an application using the path

finding algorithm, depends on what is done with the path. For some algorithms it is sufficient to know
which edges are in the path ignoring how they are ordered (e.g. the algorithm of Ford–Fulkerson, see
Algorithm 2.8). If the data is sufficient, there is no need to create a new sequence of edges wasting
time and space to create a representation of the path. Instead, it is sufficient to somehow provide
access to the edges of the path.

This path finding algorithm does not take advantage of properties known of the graph, resulting
in an algorithm which always runs in � ��� �/� �

time. In some situations the graph has some known
properties which might result in a more efficient algorithm: For example, with Dinits’ algorithm a
layered graph is constructed where every node lies on a path from the start node

�
to the target node�

using only one node of every layer: In this graph, it is possible to construct a path in � � � �
time, if�

is the number of layers in the graph. In algorithms using a path finding algorithm as subalgorithm,
the use of an algorithm taking advantage of some known properties might be indicated to get a more
efficient implementation.

As mentioned above, there are different possibilities to find a path between two nodes in a graph.
Thus, the algorithm used to find a path should not be hard–coded into an algorithm using a find path
algorithm. Instead, the implementation should be free to use a path finding algorithm appropriate in
the situation which might use additional knowledge resulting in specific properties of the path and/or
a more efficient implementation.

The algorithm given to find a path provides an example of an extension of the graph search al-
gorithm: It adds statements in the body of the graph search algorithm. In addition to the marks used
by the graph search, the algorithm needs to store additional data for every node, namely the edge
to the parent of the node in the implicit tree. In the formulation above, the mark and the edge are
not related but an implementation can choose to represent the marks together with the edges: If the
node is marked (and the mark is accessed), the edge to the parent node is also determined. Thus, the
representation of the mark can be avoided if it is possible to figure out for a node whether the edge to
the parent node has already been determined.

Connected Components

The graph search algorithm marks every node which becomes current to avoid an endless recursion.
These marks can be used to determine the connected component of a node

� � � ��� : With
� � � ��� as start

node, the nodes marked after termination of the graph search are the nodes in the connected component
of
� � ����� . Using different numbers for multiple applications of the graph search, it is possible to mark

every node with a number identifying the connected component (see Algorithm 2.4): The list of nodes
is searched for a node not yet marked. If such a node is found, it is used as the root for a graph search
using the current number of connected components as marks (which is initially � and incremented
after every graph search).

This reuse of graph search does not extend the internals of the graph search (apart from defining
what marks are to be used) but applies the algorithm directly. A more complex problem is to deter-
mine biconnected components. Algorithm 2.5 determines the biconnected components of a connected
graph. To determine the biconnected components of a disconnected graph, the algorithm has to be ap-
plied to all connected components. The algorithm presented is a sequential version of a recursive
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Input: A graph ��� ��� ��� �
, with efficient sequential access to all elements of

�
and � � � ��� � for�9���

Output: The graph � with every node “marked” with the number of the respective connected com-
ponent.
set current component := 1
for all

�9�@�
do

if
�

is not yet marked then
do a graph search with

�
as root and current component as mark

set current component := current component+1
end if

end for

Algorithm 2.4: Finding connected components

algorithm given by Tarjan [24].
By definition a connected graph is not biconnected, if there is a node

�
whose removal leaves a

disconnected graph. Such a node is called a cutting node. Algorithm 2.5 uses the implicit tree of a
depth first search to find the cutting nodes in a graph �A� ��� ��� �

: Let
� � � ��� be the root of the DFS. A

node
�:�� � � � ��� is a cutting node, if there exists a child

�
of

�
such that there is no edge % � �

from�
or a descendent of

�
to an ancestor of

�
in the implicit tree of the DFS. The node

� � � ��� is a cutting
node if it has more than one child [24].

To determine efficiently whether a node is a cutting node, the nodes are labeled with increasing
numbers in the order they are marked during the search i.e. every node

�
is labeled with its DFS–

number 	 � � ��� ���
� . The DFS–number is used to determine the low–point number
�
�
� ���
�

for every
node

�
:
�
�
� ���
�

is the smallest DFS–number of a node incident to a non–tree edge which is incident
to
�

or a descendent of
�

. If the low–point numbers and the DFS–numbers of the nodes are given, it is
easy to determine whether a node s cutting node: If the low–point number

�
�
� ���
�

of a node
�&�� � � � ���

is greater or equal than the DFS–number of its parent node then is its parent node a cutting node.
If it is known which nodes are the cutting nodes, a DFS can be used to determine the edges

forming a biconnected component (note that a node can be part of multiple biconnected components):
The edges encountered during the DFS are recorded on a stack. If a cutting node is found, all edges on
the stack with a low–point number bigger or equal than the DFS–number of the cutting are removed
from the stack and labeled with the current component number. These edges form a biconnected
component. In Algorithm 2.5, the low–point numbers are determined during the same DFS as the
connected components. It would also be possible to split the algorithm into two phases: One to
determine the low–point numbers and one to construct the biconnected components.

This algorithm is only useful to compute the biconnected components of a graph although it would
also be reasonable to just compute e.g. the low–point number separately as it can be used for different
purposes, too (e.g. to compute an “st–numbering” [8]). In addition, it is not clear what the output of
the algorithm should be: In the formulation above, the algorithm computes edges labels. It may also
be desired to construct several graphs each of which represents a biconnected component.

The algorithm basically reuses the graph search algorithm although in some extended from. Dur-
ing the search, the container maintained includes a little bit more data than in the graph search algo-
rithm. Instead of putting all edges incident to the current node in the container used by the search,
the algorithm stores an edge to the parent node and the set of edges to be considered. The main dif-
ference between this approach and the approach in the formulation of Algorithm 2.2 is the possibility
to know when the last edge incident to a node was considered: This information is used to update the
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low–point number of the parent node only once.

Input: An undirected, connected graph � � ��� ��� �
, with efficient sequential access to all elements

of � � � ���
� for
�9���

Output: The graph � with every edge “marked” with the number of the respective biconnected
component.
choose some node

� � ���
mark

� � and let 	 � � ��� � � � � � and
�
�
� ��� � � � � �

let 	 � � ��� � � � and � � � � ��� � � �
push

��� ����� ��� � � � 46517 ��� � ��� on the search stack
while the search stack is not empty do

let
� 	�� ��� � � ��� � � , with

	�� ��� � � �
and ��� � � 46517 ��� �

be the top of the stack
while ��� � �� � and there is an edge

	 ������� � ��� � with
�

marked do
let

�
�
� ���
� ������� 	 �

�
� ��� � � 	 � � ����� � ; remove

	 �������
from ��� � .

end while
if
� � ����� or

� ��� � � � � � � � ��� � � 	 � � ��� ��� then
while top edge of component stack

	*� ��81�
has

�
�
� �68 � � �

�
� ��� �

do
let � � � � � 	*� ��81� � � � � � � ��� ; remove

	*� ��8 �
from component stack

end while
let � � � � ��� � � � � � � ��� � �

end if
if ��� � �� � then

let
	 � ���� � ��� � any edge from ��� �

mark
�

and let 	 � � ����� � � 	 � � ��� , � � � ����� � � 	 � � ��� , and 	 � � ��� � � 	 � � ��� � �
push

	 �������
on the component stack and

� 	 � ���� � 4 517 ��� ���
on the search stack

else
if
�(�� ����� then
let

�
�
� ��� � � ������� 	 �

�
� ��� � � �

�
� ��� � �

end if
remove

� 	�� ��� � � ��� � from search stack
end if

end while

Algorithm 2.5: Finding biconnected components

During the algorithm, the nodes marked by the graph search are actually marked with the corre-
sponding DFS–number: If the DFS–number the of the nodes are initialized with is some illegal value,
e.g.

� � , it can be determined whether a node is marked by checking whether the current DFS–number
is different from the initial value. In addition to the DFS–number for the nodes, the algorithm uses an-
other label for the nodes (the low–point number) and a label for the edge (the component number). It
also uses two different stacks: One stack to guide the graph search and another one to keep track of the
edges encountered. The latter stack is used to determine which edges form a biconnected component.

Solving the Maximum–Flow Problem

Before defining the general max–flow problem, a flow is defined: Given a directed graph �A� ��� ��� �
,

a set 	�
 � � 	 �� � of sources, a set ��
 � � � �� � of targets, 	 � �?� � , a function  ��� < � � ������ �&
of lower bounds, and a function � � � < � � ���� � �&

of upper bounds, a feasible flow is a function
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� ��� � ������ �&
with

 ��� < � � % ��� � ��� � % ��� � � � < � � % � for all % � � �
(2.1)�

�����	��
 �	� 

� ��� � % � � �

�������� �	� 

� ��� � % � � , for all

�9� 	 � (2.2)

�
�����	��
 �	� 


� ��� � % � � �
�������� �	� 


� ��� � % ����, for all
�9� � � and (2.3)

�
�����	��
 �	� 


� ��� � % � � �
�������� �	� 


� ��� � % � � , for all
�9��� ��� 	 � � � (2.4)

If the lower bounds are all zero, a feasible flow is often called just a flow. A (feasible) flow in a
graph without sources and targets, i.e. a flow where 2.4 holds for all nodes, is called a circulation.
Circulations are used to determine a feasible flow (see below).

An illustrative interpretation is to assume the function
� ��� defines the amount of fluid flowing

through some pipes, the edges of the graph. The amount of fluid flowing through the pipe % is at least
 ��� < � � % � and at most � � � < � � % � . The fluid is poured in the sources (the nodes from 	 ) and is vanishing
in the targets (the nodes from � ). In the remaining nodes, fluid is neither lost nor gained. The flow
value
� ��� � ) �� �� � � �

of the graph � with a certain flow
� ��� is the amount of fluid flowing through

the system of pipes, i.e.

� ��� � )��� �� � � � � �
� ���

� �
�������� ��� 


� ��� � % � � �
�����	� �	� 


� ��� � % ��� (2.5)

� � �
� ���

� �
�������� ��� 


� ��� � % � � �
�����	� �	� 


� ��� � % ��� (2.6)

The general max–flow problem is to find a (feasible) flow
� ��� such that

� � � � )� � �� � � �
is

maximal. The max–flow problem is to find a flow such that
� ��� � )� � �� � � �

is maximal for a problem
where  � � < � � % � � , � % ���

and
� 	 � � � � � � � . Algorithms solving the max–flow problem can be

used to solve the general max–flow problem involving some modifications of the original graph. The
approach used to solve the general max–flow problem involves several steps [4]:

1. The multi–source/multi–target problem is converted into an equivalent single–source/single–
target problem by introducing a super–source

�
and a super–target

�
incident to all source or all

targets, respectively, in the original problam (i.e. 	�� �
and �$� �

in the modified problem).

2. A feasible solution, i.e. one fulfilling the lower bounds, is constructed by solving a single–
source/ single–target max–flow problem without lower bounds (i.e.  ��� < � � % � � , � % � �

).

3. The feasible solution, if there exists such a solution, is augmented to become a maximal solution
solving another single–source/single–target max–flow problem without lower bounds.

The first step modifies the graph to get an easier description of the problem (see Algorithm 2.6):
Two nodes,

�
and

�
are inserted into the graph.

�
becomes a “super–source”, which is connected by an

edge
� � ��� �

to each node
�/� 	 , and

�
becomes a “super–target”, which is connected by an edge

����� ���
to each node

�/� � . The lower bounds for the flow are all zero for these edges and the upper bounds
are � where � � � �&

is sufficiently large, e.g. � �"! ���$# � � � < � � % � .
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Input: A directed graph ��� ��� ��� �
, a set 	 
 �

of sources, a set ��
 �
of targets, � � � �&

Output: The graph � converted to a single–source/single–target problem
insert a new node

�
in �

for all
�9� 	 do

insert a new edge % � � � ���
�
into �

set  ��� < � � % � � � , and � � � < � � % � � � �
end for
insert a new node

�
in �

for all
�9� � do

insert a new edge % � ����� ���
into �

set  ��� < � � % � � � , and � � � < � � % � � � �
end for

Algorithm 2.6: Construct a single–source/single–target max–flow problem

If the edges of the resulting graph have no lower bounds (i.e.  ��� < � � % � � , � % ���
), the prob-

lem can be solved by the algorithms presented below (Algorithms 2.8, 2.9, or 2.10). Otherwise, it is
necessary to establish a feasible flow (if possible) before these algorithms can be used. The algorithm
to establish a feasible flow (Algorithm 2.7) modifies the graph again and uses an algorithm solving the
max–flow problem: First, an auxiliary edge from the target to the source is added. This way the flow is
converted into a circulation. Then, for every edge with non-zero lower bounds sufficient flow is send
over the edge to satisfy the lower bounds. This creates an overflow in some nodes and a demand for
flow in other nodes. The problem can then be seen as a multi–source/multi–target problem: All nodes
with overflow are considered to be sources and thus connected with edges to a new source. Since
the overflow available at a node

�
is limited, the upper capacity of the edge between the new source

and
�

is set to the overflow available. The nodes with some demand are handled correspondingly by
connecting them with edges to a new target. A feasible flow is then established by solving a maximum
flow problem on the resulting graph and adding this flow to the flow send over the edges with lower
bounds. If the flow over an edge leaving the auxiliary source does not use the whole capacity avail-
able, there is no feasible flow possible with the lower and upper bounds (the corresponding holds for
an edge entering the auxiliary target but it is sufficient to test the edges incident to one of the nodes):
The overflow produced in a node by satisfying the lower bounds can not be transported away (for
edges leading to the auxiliary target the demand could not be satisfied in a node). In this case, an error
is indicated.

The main work of the algorithm to solve the general max–flow problem is done by an algorithm
to solve the max–flow problem: It is used both to establish a feasible flow, if this is necessary, and to
perform the maximization of the flow.

For the description of the algorithms maximizing the flow, it is convenient to assume, that the
graph � � ��� ��� �

is transformed into a graph � � � ��� ��� � �
by replacing each directed edge with

two anti-parallel edges: The edge % � ��� ��� �
with � � � < � � % � � 	

,  ��� < � � % � � �
(where

�
is set to,

if there are no lower bounds), and
� ��� � % � � � is substituted by the two edges % � � ��� ��� �

with
��< � 7 ) � � % � � � 	 � � and % � � � ��� ���
�

with ��< � 7 ) � � % � � � � � � �
: The function ��< � 7 ) � � � � �� � �&

defines the residual capacity of the edges, i.e. ��< � 7 ) � � % � � % � ��������� � � �
, specifies the amount of

flow which can be send from
�

to
�

using the edge % . The function ��< � < � � < � % � is used to obtain the
reverse edge for the edge % , i.e. the edges % and ��< � < � � < � % � are the edges substituted for an edge in the
original graph.

The algorithms maximizing a flow only know about residual capacity and nothing about a flow.
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The flow of an edge can be calculated by undoing the substitution. If the edge %;� ����������:�
was

substituted by % � � ��� ��� � � % � � � ���	���
� � � �
, the flow of

� � � � % � is the residual capacity ��< �
7 ) � � % � � �

of % � � plus the lower bound  ��� < � � % � (if there is a lower bound). Note, that the substitution is only
the view of the graph taken by the algorithm: It not necessary to really substitute every edge in the
representation by a pair of edges. It is only necessary for the algorithms to make the graph appear as
if this substitution was made.

Input: A directed graph � � ��� ��� �
, a source

� � �
, a target

� �A�
, lower bounds on the flow

 ��� < � � ������ �&
, upper bounds on the flow � � � < � � � ���� �&

, a sufficient large � � � �&
Output: A flow

� ��� � � �� � �&
satisfying the lower bounds on the flow or an error indication if no

such flow exists
add an edge % � � � � � �

to
�

with  ��� < � � % � � , and � � � < � � � � �"�
for all % �&�

do
set
� ��� � % � � �  � � < � � % � and � � � < � � % � � � � � � < � � % � �  ��� < � � % �

end for
add a new source

� �
and a new target

� �
to

�
for all

�9�@� � 	 � � � � � �
do

let
� )�K) 517 < � � ! ����� � ��� 
  ��� < � � % � � ! �������� �	� 
 � � � < � � % �

if
� )�K) 517 < � , then
add an edge % � ����� � � �

with � � � < � � % � � � ���
and
� ��� � % � � � , to

�
else if

� )�K) 517 < � , then
add an edge % � � � � ���
�

with � � � < � � % � � � �
and
� ��� � % � � � , to

�
end if

end for
solve the max–flow problem on � with upper bounds � � � < � ; let the result be

� ��� �� ��� � �����
	 � � ��
� �&
if

0 % � 	 � � � ���
� � �;�
with
� ����� �� � % � � � � � < � � % � then

indicate an error: There is no valid flow
else

for all % � �
do

if %C� � � � � �
or % � ����� � � � � or % � 465 � � � �

then
remove %

else
let
� ��� � % � � � � ��� � % � � � ��� � �� � % � and � � � < � � % � � � � � � < � � % � �� ��� < � � % �

end if
end for
return the flow

� ��� � % �
end if

Algorithm 2.7: Establish a feasible flow

A simple algorithm to maximize the flow in a graph is to find directed paths from
�

to
�

where
every edge % has a positive residual capacity ( ��< � 7 ) � � % � � , ) and to augment flow along these paths
(see Algorithm 2.8): Let � � � % � ������� � %*� � be a path from

�
to
�
. The residual capacity ��< � 7 ) � � � � �

� � � ����� ��< � 7 ) � � % � of the path � is the minimum of the residual capacities of the edges in � . It is
possible to increase the flow by an amount of ��< � 7 ) � � � � on the edges along the path without violating
the bounds on the flow. In addition, the flow condition 2.4 is also not violated: The additional amount
of flow sent to a node is immediately send to the next edge until the target is reached.
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Input: Directed graph � � ��� ��� �
, a source

�����
, a target

� ���
, residual capacities ��< � 7 ) � �� ���� �&

Output: residual capacities implying a maximal flow
find a path � � � % � ������� � %�� � from

�
to
�

with ��< � 7 ) � � � � � ,
while � �� � �

do
for all % � % � ������� � %�� do

set ��< � 7 ) � � % � � � ��< � 7 ) � � % � � ��< � 7 ) � � � �
set ��< � 7 ) � � ��< � < � � < � % ��� � � ��< � 7 ) � � ��< � < � � < � % ��� � ��< � 7 ) � � � �

end for
find a path � � � % � ������� � %*� � from

�
to
�

with ��< � 7 ) � � � � � ,
end while

Algorithm 2.8: Augmenting–Path algorithm to solve the max–flow problem

The flow constructed with this algorithm is maximal due to the Max–Flow/Min–Cut theorem
[10]. The algorithm is called augmenting path algorithm or Algorithm of Ford/Fulkerson. This
algorithm runs, in general, in pseudo–polynomial time. If the paths are constructed with certain
limitations, e.g. using only shortest paths or the path with with the maximal residual capacity to
increase the flow, yields polynomial time algorithms [6].

Input: Directed graph � � ��� ��� �
, a source

�����
, a target

� ���
, residual capacities ��< � 7 ) � �� ���� �&

Output: residual capacities implying a maximal flow
compute exact distance labels * 4 � � ���
� for all

� �@�
set * 4 � � � � � � � � �9�
for all % � � � ��� � � ����� � � � do

push ��< �
7 ) � � % � flow from

�
to node

�
using %

end for
while there is a node

�/���
with <�� 7 < � �

���
� � , do
select a node

�
with <�� 7 < � �

���
� � ,
if

0 % � ��� ����� � ����� ���
� � ��< � 7 ) � � % � � , � * 4 ��� ���
� � * 4 ��� ��� � � � then
push ��< � 7 ) � � % � flow from

�
to node

�
using %

else
set * 4 � � ��� � � � � � � 	 * 4 � � ��� � � � � ��������� � ����� ���
� �

end if
end while

Algorithm 2.9: Preflow–Push algorithm to solve the max–flow problem

The augmenting path retains the property that the flow conforms to the flow condition 2.4 through-
out the execution of the algorithm.5 A different approach to solve the problem, the Preflow–Push Al-
gorithm, first attempts to push as much flow towards the target and later corrects violations of the flow
condition (see Algorithm 2.9). To track the violation of the flow condition, in each node the amount of
excess is stored: <�� 7 < � �

��� � ��� ���
is the amount of flow which has to be pushed to an adjacent node.

In the formulation of this algorithm a push of some flow � along and edge %C� ��� ��� �
is the following

5More precisely, the algorithm maintains the flow balance in the nodes (except the source and the target) throughout the
algorithm: If the flow balance is initially violated in some node, the flow balance will be violated by the same amount at the
end of the algorithm.
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operation: The flow on the edge % is increased by � , i.e. ��< � 7 ) � � % � is replaced by ��< � 7 ) � � % � � � and
��< �

7 ) � � ��< � < � � < � % ��� is replaced by ��< �
7 ) � � ��< � < � � < � % � � � � . At the same time, the excess % � �>% � � ���
�

of node
�

is decreased by � while the excess <�� 7 < � �
��� �

is increased by
�

. Initially, the excess of all
nodes is zero. The algorithm uses a distance from the target for its initialization: The distance used
is the length with respect to the number of edges of a shortest path from the respective node to the
target node

�
. This distance can e.g. be computed using the graph search algorithm with a queue as

container.
This preflow–push algorithm [15] leaves some details unspecified such as the choice of the node

with positive excess and the choice for the edge used to push the flow. In addition, there are several
improvements which can be embedded into this framework: Heuristics to recalculate the exact dis-
tance from time to time and an early detection of a saturated cut (i.e. the situation that there is no
directed path � from the source to the target with positive residual capacity on all edges) can yield a
better run–time.

While the augmenting path and the preflow push algorithms solved the max–flow problem imme-
diately, the problem is transformed into a sequence of problems by Dinits’ Algorithm [5] shown in
Algorithm 2.10 . The idea is to create a max–flow problem on layered graphs: The node

�
is the only

node in the first layer
� � and the node

�
it the only node in the last layer

� � � � , where
!

is the length
of a directed, shortest path (with respect to the number of edges) from

�
to
�

using only edges with
a positive residual capacity. The layered graph � � � ��� ��� � �

is constructed from the original graph
� � ��� ��� �

by ignoring all edges not laying on a shortest path � from
�

to
�

with ��< � 7 ) � � � � � , .
A layered graph � � � ��� ��� �

with
! � � layers

� � ������� � � � with source
�;� � � , target

� � � � � � , and
residual capacity ��< � 7 ) � � ������ �&

is called a layered network if the following properties hold:

1. The source
�

is the only node in
� � and the target

�
is the only node in layer

� � � � .
2. Every edge % � � �

has a residual capacity ��< � 7 ) � � % � � , .
3. Every edge % � � �

lies on a directed path � from
�

to
�

in � � .
A layered network can be constructed using a BFS starting at the source

�
and terminating when

the target node
�

is reached. During the search the edges between the layers (and the layers) are
recorded and after the search the edges not laying on a path between the source and the target are
removed. When a layered graph is constructed, a max–flow problem on this graph is solved. If
this algorithm takes no advantage of the layered structure of the graph, it is no real benefit to use
Dinits’ algorithm but e.g. the augmenting path algorithm can be improved by the use of a path finding
algorithm using the layered structure.

Input: Directed graph � � ��� ��� �
, a source

�����
, a target

� ���
, residual capacities ��< � 7 ) � �� ���� �&

Output: residual capacities implying a maximal flow
while

0 � � ��< � 7 ) � � � � � , do
construct a layered graph � � where each edge % has ��< � 7 ) � � % � � , and is part of a shortest path
� with ��< � 7 ) � � � � � ,
solve the max–flow problem on � �

end while

Algorithm 2.10: Dinits’ algorithm to solve the max–flow problem
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A max–flow problem on a layered network can be solved using a simple algorithm. For a node���� � � �
in the layer

� � the through–put is defined as

��� � ��� = � � ��� ��� � � � � � 	 �
����� ��� � � 
 �$#��	� � ��
������ ��< � 7 ) � � % � � �

����� �	� � � 
 �$#���� � ��
�������� ��< � 7 ) � � % � �

This is the amount of fluid which can pass through this node without violating the bounds on the flow.
The algorithm finds the node

�
with the minimal through–put. Let

�
be in the layer

� � . The algorithm
pushes ��� � ��� = � � ��� ���
� units of flow to the nodes in the layer

� � � � using as many edges as necessary
to transport the flow. From there, the flow is pushed to the next layer and so on until the flow arrives
at the target. Likewise, flow is pushed from the layer

� ��# � to the node
�

creating demands in some
or all nodes of the layer

� ��# � . The missing flow is pushed from the previous layer and so on until the
flow is pushed from the source.

The approach described to solve the general max–flow problem involves several steps. Each of
these steps can be performed using a different algorithms: Depending on the representation or known
properties of the graph, an application of these algorithms might choose a suitable approache. The
algorithm mainly consists of two phases: First, a legal flow is established, then the legal flow is turned
into a maximal one. Both phases consist of an application of a max–flow algorithm which solve a
problem similar to the general max–flow problem but without lower bounds and only a single source
and a single target. There exist several major approaches to solve the max–flow problem (augmenting
path, preflow–push, Dinits’) each of which can be modified itself.

The first phase of the algorithm establishes a certain flow (if there exists a valid flow): It maximizes
a flow on a certain modified network where the initial flow is the zero flow. Common descriptions of
max–flow algorithm start always with initializing the flow to zero. However, this is not be reasonable
for the second phase of the algorithm as this would destroy the existing flow. In addition, some
heuristic might be used to establish a flow which is already closer to the final flow than the zero flow.

As already noted, the algorithm solving the max–flow problem modifies the graph to create a
single–source/single–target problem. If Dinits’ algorithm is used to solve the problem, several sub-
graphs are created during the execution of the graph e.g. by removing the edges not present in the
subgraph. Thus, to make the algorithm work, it is necessary to modify the graph somehow. All these
modifications are auxiliary and do not appear in the final result of the algorithm: The auxiliary mod-
ification have to be undone at the end of the algorithm or when they are no longer necessary (the
auxiliary modifications used to create a legal flow have to be undone before the final maximization is
performed).

Like the other algorithms, the max–flow algorithms need to access data associated with the nodes
and the edges of the graph. One peculiarity is introduced by the two phases of the general max–flow
algorithm where the same algorithm may be applied twice to solve different problems: The exact
meaning, and maybe the representation, of the upper bounds for the flow of an edge changes!

The description of the algorithms to solve the max–flow problem above assumes the existence
of closely related pairs of edges. This is necessary to solve the max–flow problem. However, if the
update of the residual capacity of the reverse edge is made implicit (i.e. if there exist pairs, modifying
the residual capacity of one edge automatically updates the residual capacity of the other edge), there
is no need for the pairs of edges. Depending on the algorithm used, this can be used solve slightly
modified problems (e.g. to determine a blocking flow).

25



2.3 Graph Representations

This section introduces some possible representations of graphs and discusses some of the advantages
and disadvantages of the respective representations. The intent of this discussion is to show that there
is no single representation which is suitable for all purposes. This results in the requirement for the
implementation of algorithms to be applicable to different representations.

Here, the discussion is centered on the structure of the graph, i.e. how to provide efficient access
to the adjacency lists of the nodes. One reason for accessing a node or an edge is to access data
such as weights, capacities or distances associated with the corresponding object. Here are only some
possibilities of the representation of data associated with the nodes and edges of a graph discussed.

The definition of graph suggests to represent a graph as a set of nodes and a set of edges: Some
container, e.g. a linked list or an array (see [4] for a description of linked lists and arrays), is used
to store the objects representing the nodes and another container, potentially a linked list or an array,
stores the objects representing the edges. The edges store references (e.g. indices or pointers) to
the nodes they are incident to. If there is no additional property maintained for the elements of
the container, for example that the directed edges are ordered such that all edges leaving a certain
node are consecutive in the container, this representation is normally insufficient to get an efficient
implementation of an algorithm: Often it is necessary to have efficient access to the edges incident to
a certain node or to have efficient access to the edge incident to two nodes.

There are many different representations of graphs. Here are some common representations: A
graph can be represented as an adjacency matrix, an incidence matrix, a set (i.e. a linked list, an
array, etc.) of adjacency lists, or one of various representations which make use of some specialized
properties of a graph. For example, a rectangular grid graph can be represented as a matrix, an
interval graph can be represented by corresponding intervals, a planar graph may be represented in a
way which allows easy access to the dual graph and so on.

The characteristics of the various representations differ in support for efficient accesses and modi-
fications. Depending on the application, different representations are suitable: An application needing
fast access to the edge connecting two nodes but making no modifications of the graph will prefer a
different representation than an application making many modifications but with weaker requirements
on the accesses supported.

General Requirements

Independent of how the structure of the graph is represented, often it is necessary to have access
to the set of nodes and the set of edges. The need to access all nodes or all edges arises in many
situations, notably to do some initialization: In the algorithms presented above it is assumed that the
data associated with the nodes and the edges is initialized appropriately. Thus, an efficient possibility
to access all nodes and all edges of a graph is desirable.

If the set of nodes can be accessed and if there is a method to access all edges incident to a node,
it is possible to access the set of edges, too: Just access all nodes and for each node access every
edge. This might access every edge at most twice such that this way the edges can be accessed in an
asymptotically efficient manner. For directed graphs it is easy to make sure that each edge is accessed
exactly once: Before accessing the edge, it is checked that the node from which it is accessed is the
head (or the tail). In many cases this method also works for undirected graphs,6 e.g. because the two
nodes incident to an edge are stored somehow in the edge which has to be done in a particular order

6It does not work for all cases as it is possible that the edges are not really stored. In Section 4.2.1 an example of a graph
with implicitly stored edges will be shown.
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on a computer: The two nodes can be stored in a structure with two distinct names for the two nodes
or in an array with two elements etc. In any case, the two nodes incident to an edge are accessed by
two (probably only slightly) different methods. This difference can be used to make sure that each
edge is accessed just once.

Let
��� �

be a node of a directed graph ��� ��� ��� �
. Normally, it is necessary to have efficient

access to both sets
4 5 ���
�

and ����� ���
� . In some implementations of graphs there is apparently some
confusion about the meaning “directed”: The fact that a graph is directed does not necessarily mean
that it is sufficient to provide efficient access to the the set ����� ���
� of a node

�
. The reason why there

is a temptation to provide access to ����� ���
� only, is that the representation is more efficient and the
methods modifying and accessing the representation are easier to implement. A simple approach to
store a directed edge visible to one node only could be a pointer referencing the adjacent node. If the
edge has to be visible from both incident nodes (efficiently) there are at least two pointers necessary
plus some information about the direction of the edge. This conforms to the theoretical view where the
edges of a directed graph contain more, not less, information than the edges of an undirected graph:
In addition to the nodes incident to the edge, the edge contains the information about the direction.
As there are some algorithms for which it is sufficient to have access only to the edges leaving a node
(e.g. an algorithm determining a topological order of the nodes [16]) such a representation will be
presented below.

The algorithm to solve the general max–flow problem modifies the graph: Some auxiliary nodes
and edges are added to transform the problem into one which is easier to solve. Auxiliary modifica-
tions are often used for graph algorithms. In addition, some algorithms create a graph (a special case
of a modification) or transform the graph in some way: There are modifications which are part of the
result, too.

In general, it should not be required that a graph representation allows modifications to avoid re-
strictions for the representations: Certain graph representations are highly efficient for special classes
of graph (e.g. the representation of grid graphs presented below) but do not allow modifications or
only some very restricted modifications. On the other hand algorithms which apply auxiliary modifi-
cations should be applicable to the specialized representations, too. In section 4.2.3 it will be shown
how modifications can be applied to a graph even if the actual representation does not allow such
modification. It is still desirable to have the possibility to modify the actual representation for two
reasons:

1. Making the modifications without modifying the actual representation imposes some additional
overhead which is best to be avoided.

2. Sometimes, the modifications made are not just auxiliary modifications but the main output of
the algorithm.

A discussion of the exact approach used to allow modifications and the involved advantages and
disadvantages of this approach is deferred until section 4.2.3 where it is discussed in depth. For now
it is sufficient to remember that it is desirable for a graph representation to allow modification but it is
not necessary.

Adjacency Lists

A flexible representation of a graph is called adjacency lists: The graph is represented as a container
of nodes and for every node a container of edges. The name is derived from a specific choice for the
containers of edges: If a linked list [4] is used, every node stores an adjacency list. Actually, the list is

27



an incidence list as it stores the edges incident to a node and not only a list of the adjacent nodes but
this is basically the same if the graph does not contain parallel edges. The distinction is only important
if there are parallel edges between two nodes.

This representation allows to store additional data like marks or weights in the respective objects:
If it is known what data will be accessed for the nodes and the edges when the data structure for the
representation of the graph is created, the corresponding data can be stored in the lists of the nodes
and the edges. If this is not known, the representation of additional data becomes more complex: The
nodes and edges would need some suitable ID which can be used by some sort of map (like a hash, a
search tree, a dynamic table, or an array; see [4]) to identify the data associated with the corresponding
object.

There are many choices to implement a representation as a set of adjacency lists. There are several
choices for the containers, e.g. singly linked lists, doubly linked lists, arrays, or trees. The choice of
the container for the nodes is independent from the choice of the containers for the edges and the
containers for the edges can potentially even vary: For some nodes an array is used, for others a
linked list etc. Of course, the efficiency and possibility of modifications and accesses depends on the
choice of the containers but it is possible to create a representation using a set of adjacency lists which
provides efficient access to the set of nodes, the set of edges, the edges incident to a node, and which
allows efficient removal and insertion of nodes:

If both the container for the nodes and the containers for the edges are chosen to be doubly linked
lists, it is possible to implement modification and access operations efficiently. However, this does not
mean that this representation is sufficient for all purposes. One drawback is the size of the represen-
tation: For every node and every edge two pointers are necessary to represent the doubly linked list.
Additional pointers for every edge are necessary to allow both efficient access to the edges from both
nodes and efficient removal of the edge. This overhead can be too expensive for large graphs with
only few data stored with the nodes or the edges. Different choices for the containers can reduce the
size of the representation at the expense of increased run–time.

The main idea for the representation can be varied in many ways. Using a container for the nodes
and for each node a container for incident edges results in a representation with efficient access to the
nodes of the graph and the incidence list of each node but without a direct access to the edges of the
graph. To avoid this problem and at same time saving the overhead needed for the representation of
some lists (often there is some administrative data stored for a list) the incidence lists can be joined
to become just one list: The edges incident to a node are stored sequentially in the list and every
node stores a reference to it’s first incident edge and it’s last incident edge.7 For more information on
adjacency lists and variations thereof see [2].

A special case of adjacency lists to represent directed graphs is a representation where each edge
only appears in one adjacency list: The edge is basically invisible from one of the nodes. This rep-
resentation avoids some overhead imposed otherwise by this representation. The drawback of this
representation is the fact that it is insufficient for many applications.

The representation as a set of adjacency lists is suitable for most problems and allows efficient
modification and access as well as parallel edges and loops. However, there are some algorithms
which require accesses being inefficient with a representation as adjacency lists. For example, it is
normally inefficient to find an edge incident to two given nodes: This operation involves finding of
one of the nodes and an edge incident to the other node in the incidence list of this node. Normally,

7To allow empty incident lists for nodes, it is convenient to store a reference to the first edge which is not incident to the
node instead of the a reference to the last incident edge: An empty list would be represented by two identical references.
This technique is used intensively in STL [19].
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this operation is not in � � � � as required by some algorithms to be efficient.

Adjacency Matrix

A directed graph � � ��� ��� �
can be represented as a

� �9� � � �!�
matrix � � 	�� � )��

called adjacency
matrix. The node

� � corresponds to the � -th row and column: The element
� � ) in the � -th row and the+

-th column is � if there is an edge
��� � ��� ) � and

,
otherwise. For undirected graphs it suffices to store

an upper triangular matrix to store the information about edges incident to the nodes if it is made sure
that only elements

� � ) are accessed where � � + .
This representation allows efficient insertion and removal of edges: Only the corresponding el-

ement has to be changed. Insertion of new nodes involves increasing the size of the matrix to get
an unused column and an unused row. Insertion of a nodes it thus, in general, not efficient for an
adjacency matrix. It can be efficient, if there is at least one removed node: Removing a node can be
done by just ignoring the corresponding row and column which would yield an efficient possibility
to remove a node. If a node is inserted after removing some other node, the corresponding row and
column can be used for the new node.

While the access to the set of nodes is efficient, the efficiency of access to the set of edges depends
on the number of edges present in the graph: Access to the set of edges is only efficient if there are
many edges (i.e.

� �!��� � ��� �/� " �
) because the matrix has to be searched for edges taking � ��� �!� " �

time.
If there are fewer edges, it is necessary to maintain additional information, e.g. a linked list, to access
the set of edges efficiently. Likewise, the efficiency of accesses to the set of edges incident to a node
depends on the number of edges. The advantage of this representation is the possibility to access an
edge incident to two given nodes in � � � � time: All what has to be done is to access the corresponding
element in the matrix.

Planar Graphs

As representative for special representations for graphs with a known property, planar graphs will be
used. Planar graphs have some nice properties making it possible to solve some problems efficiently
for a planar graph which would otherwise be NP-complete (for example the Max-Cut Problem; see
[14, 20]):

� The number of edges is at maximum linear in the number of edges, i.e. the equation � ��� �/� � �
� ��� �/� �

holds for every planar graph ��� ��� ��� �
.

� For every planar graph ��� ��� ��� �
a planar dual graph �� � ��� � ��� ��� � �

can be constructed: For
every face in � insert a node into �� � ��� . Two nodes in ��� � ��� are adjacent, if the corresponding
faces in � are adjacent: Thus, for every edge % � �

there is an edge % � � � �
.

� For planar graphs an orientation (respective to the embedding) can be used. This orientation is
defined by the cyclic order of the edges incident to a node.

To make use of these properties, it is necessary to have efficient access to the necessary informa-
tion. The corresponding information is normally not present in the general representations for graphs
and special data structures are used for planar graph. The use of special data structure is also indicated
to maintain planarity if the graph is modified: In a planar graph, insertion of an edge can potentially
violate planarity. A special representation for planar graph would refuse the insertion of an edge
violating planarity. Thus, insertion of an edge in a planar graph may fail.
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A data structure maintaining the planarity and providing efficient access to order of the edges and
the dual graph is the Quad Edge structure [13]. This structure maintains cyclic lists of edges where
every edge is in a total of four lists: As every edge is incident to two nodes and two faces it is stored
in two lists storing the edges incident to a node and in two lists storing the edges incident to a face.
If the graph is viewed as the dual graph, the roles of nodes and faces are exchanged while the rest
remains identical. Thus, a Quad Edge structure store simultaneously a planar graph � and its dual
graph ��� � ��� . In addition, each cyclic list of edges defines the cyclic order of the edges incident to a
node or the circle defining a face (again with reversed meaning in the dual graph).

When inserting an edge, the structure checks whether the incident nodes are laying on a common
face: If this is the case, the edge is inserted by splitting the cyclic list defining the common face into
two cyclic lists. The new edge is inserted into both lists where they are split. In addition, the edge
is inserted into the cyclic lists of edges incident to the nodes: It is inserted between the two edges
incident to the face (remember that a face is defined by successive edges in the cyclic orders around
the nodes).

If the nodes of the planar graph are to be accessed, it may be necessary to maintain an additional
container of nodes: The nodes are only given implicitly by the QuadEdge structure. Likewise, the
edges may be also stored in a container to access them directly.

Although this structure can store arbitrary planar graphs, it is not appropriated for all situations
where planar graphs are involved: An example are grid graphs used in VLSI design [17] which can be
represented much more efficient. A grid graph is an undirected graph with all pairs from

	 � ������� � � � �
	 � ������� � � �

as nodes and with edges connecting each node
� � ��+ � � � � � ������� � � � � ��+ � � ������� � � � � with

the nodes
� � ��� ��+ � and

� � ��+ ��� � . An efficient representation of this graph consists of two integers,
more precisely the pair

� � � � �
. If the nodes should be represented explicitly, e.g. because some data

is associated with the nodes, this can be done using a � � � matrix. Likewise, the edges can be
represented by a � � � � � matrix for the horizontal edges (i.e. edges of the form

	 � � ��+ � � � � � � ��+ � � ),
and a � � � � � matrix for the vertical edges (i.e. edges of the form

	 � � ��+ � � � � ��+ � � � � ).
The Quad Edge structure and the representation of grid graphs demonstrate specialized represen-

tation providing additional information not found in representations of general graphs and a represen-
tation storing a graph much more efficiently than the representation of a general graph. Planar graphs
are also a typical example for non–simple graphs: The dual graph of planar graph, even if the original
graph was simple, is in general not simple. A loop is introduced by a node with degree � and a node
with degree � introduces parallel edges.
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Chapter 3

General Approaches

Reuse of software is becoming more important with more complex systems to be implemented: The
costs of implementation should be amortized over multiple products. Thus it comes as no surprise
that some general technology has evolved over the years which has reusability as its main concern.
One of the most promising approaches is object-oriented programming. Since there exists already a
wealth of literature covering object-oriented programming, only some of the key issues are introduced
in Section 3.1.

Apart from reuse of an implementation there is another issue where reuse can be exercised: The
design of an implementation can also partially be reused. There are some recurring patterns found
in how implementations are designed. These can be identified and described as “Design Patterns.”
Section 3.2 features an introduction to the general concept of design patterns.

Finally, Section 3.3 gives a brief discussion of the “Standard Template Library” (STL), which
will be part of the Standard C++ Library. This library provides highly generic algorithms for “linear”
objects: lists, arrays, sets, etc. There are concepts used to implement this library which are very
similar to those proposed in this work. In particular the implementation of the algorithms is made
independent of the data structure used.

3.1 Object-Oriented Software Design

The intention of this section is to briefly review the basic concepts of object oriented programming
as these are the basics of the concepts presented in the next chapter. A complete discussion of this
topic is found in the books of Booch [3] and Rumbough et al. [22] (which also introduce the graphical
notation used).

The focus of object–oriented programming is on decomposing the problem into objects: An object
is an entity with some state, some behavior, and an identity. Objects sharing the same structure and the
same behavior are grouped into classes. The aim of object–oriented programming is to decompose
the problem into cooperating objects. The property new in object–oriented programming is to use
objects as the important abstractions and to decompose the problem into object rather than using the
traditional algorithmic decomposition.

One of the key features of object–oriented programming is abstraction: An abstractions denotes
the essential characteristics of an object distinguishing it from all other kinds of objects relative to the
perspective of the viewer. By abstraction it is possible to concentrate on the properties of an object im-
portant to the system build, i.e. its interface, while ignoring irrelevant details, e.g. the implementation
of the object’s behaivor.
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The details of the objects are hidden from the outside world: They are encapsulated by the
object’s class. Encapsulation serves to separate the contractual interface of an abstraction and its
implementation. Proper encapsulations guarantees that an object’s state can only be modified through
the interface making the behavior of an object predictable. It also allows to change the implementation
of a class without affecting the objects using an object of this class. The interface of an object in
object–oriented programming consists of a set of methods implemented for the class of the object. A
method is basically a function which is given special permission to access the internals of an object:
In general, only methods of a class can access the state of an object of this class directly. All other
functions have to use the methods provided for the corresponding class to use an object.

To make the use of objects and classes more powerful, another concept employed in object–
oriented programming are hierarchies: A hierarchy is a ranking or an ordering of abstractions. The
two most important hierarchies in object–oriented systems are the class structure and the object
structure. The object structure is already known from other programming paradigms where objects
are created from other objects by means of aggregation: An object may be made up from multiple
objects of different classes. These objects become a part of of a bigger object and are said to be
members of the bigger object.

The class structure orders classes in a fashion which makes it possible to relate objects of different
classes by means of inheritance: The objects of a class � may share the structure and the behavior of
the objets of some other class � and add some additional structure and behavior, i.e. they inherit from
the class � which is called a base class in this context. The class � inheriting properties of some
base class � is called a derived class. This relation among classes forms an inheritance hierarchy. In
general, a class may inherit from multiple classes such that the objects share the structure and behavior
of all classes inherited from. By inheritance a form of polymorphism is created: Since the structure
and the behavior of derived class is shared with the base class, an object of a derived class can be used
wherever an object of the base class can be used.

The mechanism used to create this polymorphism is to define the methods of a class to be virtual
functions. These function can be overridden in a derived class to perform special actions depending
on the actual class the method is invoked with. This allows to dynamically decide what is done if a
method is invoked. Sometimes it is useful to force derived classes to override the function. In this
case a virtual function is called an abstract function: Only the semantic of a call to this function is
defined by the base class but the implementation to create the desired behavior has to be implemented
by a derived class.

Static Polymorphism vs. Dynamic Polymorphism

Some strongly typed object–oriented languages like C++ and Ada 95 provide two styles of polymor-
phism: inheritance and templates.1 Both approaches have advantages and disadvantages and it is often
argued that one approach is superior to the other. However, as described below, a combination of both
approaches yields a mechanism more powerful than any of the approaches used alone.

Normally, the object–oriented approach uses inheritance to realize dynamic polymorphism: A
method taking a (reference to a) base object can be given a (reference to a) derived object. The exact
type of the argument need not be specified at compile–time but can vary while the program is running.
Still, the method can invoke functions depending on the type of the argument. This works by defining
(probably abstract) functions in the base class which can be overridden by derived classes: These
functions are called virtual functions. To make this work, reference semantics for the arguments has

1The term templates is quite C++ specific. The same concepts is called generic package in Ada. However, to avoid
confusion, the C++ terminology will be used.
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to be used because the type is not known at compile–time. If value semantics is used instead, there
would be no dynamic dispatch because the information about the type of the object is lost when the
argument is created. In addition, the object of the derived class would be sliced e.g. when it is copied,
i.e. everything not part of the base class is not present in the copy: Even if the original object were of
a derived class, the copy would be an object of the base class and additional information is cut off.

Polymorphism using templates does not depend on inheritance: Any type conforming to the inter-
face required by a templatized implementation of a method can be used to instantiate the correspond-
ing method. This has the disadvantage that it must be fixed at compile–time: The corresponding code
has to be generated. That is why this approach is called static polymorphism. However, there are
also some advantages: The classes used to instantiate the method need not be derived from a base
class. This can be used to avoid strongly coupled inheritance hierarchies. In addition, value semantics
can be used for templates unless static polymorphism is mixed with dynamic polymorphism:

It turns out that the template approach can be used
Handle Abstract Base

Other DerivedDerived Template

Figure 3.1: Using inheritance with templates

together with the inheritance based approach: It is
easily possible to use a template implementation with
a hierarchy of classes. This is done using a simple
hierarchy where the abstract base class provides all
relevant methods (see Figure 3.1). A reference to an
object of a class derived from the base is stored in a
handle class, which is used to instantiate the templatized method. An object of the handle class uses
this reference to delegate requests to the object referenced.

The key idea behind this structure is the fact that in both forms of polymorphism, the interface of
the argument to a method has to match exactly: For templates the interface is fulfilled by conformance
to the required syntax; for inheritance the interface is fulfilled by inheriting and possibly overriding
the required functions. In the hierarchy, the class Handle conforming to the syntactic requirements
of the template interface is implemented by delegating the requests using virtual functions: The class
Handle has all methods needed to conform to the interface of the templatized method. The imple-
mentation of the methods in the class Handle is rather simple because all Handle has to do is to
delegate the requests to the object it is handling. The object handled by an object of type Handle
is an object of a class derived from AbstractBase. The class Handle does not bother about the
exact type of the object handled as it only needs the methods declared by AbstractBase. There are
two approaches depicted to derive from AbstractBase. The first, depicted as OtherDerived,
is the normal manual derivation and there is nothing tricky about it. The other method is more inter-
esting as it demonstrates how to fit a class into a hierarchy: This one uses a template derived from
AbstractBase, called DerivedTemplate. Thus, any class conforming to interface to instan-
tiate DerivedTemplate can be used and becomes a part of the hierarchy of classes manageable
by a Handle. This structure demonstrates the benefit to use both dynamic and static polymorphism
together.

3.2 Design Patterns

A relatively new tool to help with the creation of object–oriented systems are Design Patterns [12]:
A design pattern describes a solution to a recurring problem arising when designing object–oriented
systems. To do so, it systematically names, motivates and explains a general design in a language
independent manner.

There are four essential parts of a design pattern: The pattern name, the problem description,
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the solution, and the consequences of the application of a certain pattern. These parts are described
below.

The pattern name conveys the essence of the pattern. The name is used as part of the design
vocabulary to describe solutions to certain problems. The name of the pattern makes it easier to talk
about a design, to document a design, and even to think about a design. Thus, it can be used as an
abstraction at a higher level.

The problem description motivates the general problem solved by the design pattern. This defines
when to apply the pattern. This part of the pattern describes a general situation which has to be
solved. Sometimes a concrete example is used to do so. The problem description might include a list
of conditions which must hold before the application of the pattern makes sense.

The solution describes the elements of the pattern together with their interaction, their responsi-
bility, and their relationships. The description of the solution is not dependent on a concrete problem
and there is no implementation given which is used to always solve the problem: The exact layout of
the objects involved in a pattern depends on the actual problem to be solved. The design pattern only
gives a general arrangement of objects and classes involved in the solution of a general problem. This
solution has to be tailored and adapted to the problem actually solved.

The consequences section lists the trade–offs made when applying a design pattern. This is used
basically to decide whether the approach of the design pattern is feasible to solve a certain problem:
There may be other design patterns solving a problem which is quite similar to the problem solved
by the design pattern at hand but with different trade–offs. In addition, the costs involved in the
application of a design pattern may be too high to solve a certain problem such that a different solution
has to be sought. The consequences of design patterns help to evaluate the impact on a system’s
extensibility, flexibility, and portability but also list the costs and limitations.

The notation of design pattern follows a consistent format which makes it possible to quickly find
the relevant details. This format as well as some of the design patterns used in the next chapter are
described in the book about design pattern by Gamma et al. [12].

3.3 The C++ Standard Template Library

The Standard Template Library, STL for short, is a library for very generic algorithms working on
sequences [19]. Being part of the (prospective) C++ Standard Library, STL was faced with a simple
problem: The algorithms should work with any implementation of a sequence (providing sufficient
accesses) storing an arbitrary data type. If there are 	 different data types,

�
different implementations

of sequences, and
�

different algorithms, apparently 	�� � � � different implementations are necessary.
Fortunately, this amount can be reduced to

�
�
�

by assuming that all sequences and all algorithms take
the data type as a template argument. However, this is still to much:

�
is unknown because a user can

implement his/her own sequence. The key feature of STL is to reduce the amount of implementations
necessary to

�
algorithms and

�
interface classes.

The key idea of STL is to access sequences only through iterators: All algorithms work with
iterator classes which form the interface to the sequence. Since the interface to the iterators is itself
standardized, each algorithm needs only be implemented once. The only thing necessary to apply an
STL algorithm to a self–written sequence is to implement a corresponding iterator.

Actually it is not really true that every algorithm is implemented only once: There are several
different implementations of some algorithms using different iterators. The reason for this is to get
an implementation as efficient with a certain sequence as possible. For example, an array provides
random access to all its elements in � � � � time. This is not true for a (normal) list: There, access to
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an arbitrary element takes � � � � time (if the list stores � elements). Some algorithms, like a search in
a sorted sequence, take advantage of the arbitrary access facilities: For an array, the search can be a
binary search while the search in a list is probably linear.2 To enable different implementations, some
iterator categories are defined in STL.

The main idea to provide implementations of algorithms working on arbitrary sequences is to
implement the algorithms using an indirection, the iterators, instead of implementing the algorithms
directly on the sequences. This way, only the entities used for the indirection have to be adapted
to the sequence (once for each sequence) without touching the algorithm. For the implementation
of STL algorithms, the attention is focussed on the algorithms only: It is completely irrelevant to
the implementation of the algorithm what sequences it is applied to. The implementation imposes
certain requirements (which define the iterator category the algorithm gets as argument) and can then
be applied to any sequence which fulfills these requirements.

Like the name STL suggests, the algorithms are implemented as template functions, i.e. static
polymorphism is used. The functions are normally at least templates in the iterators used. Additional
arguments, like are compare functor (i.e. an object which serves to compare two objects of a certain
class) or a predicate (i.e. an object which maps some arguments to a boolean value), are also template
arguments. This creates very fast algorithms at the expense of increased size of the executable pro-
gram. Of course, using the class hierarchy shown in Section 3.1, it is possible to apply STL algorithms
in cases where dynamic polymorphism is preferred, too.

2It makes also sense to apply a binary search in a linear list if comparisons of the elements are expensive compared with
iterating over some elements.
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Chapter 4

Concepts

The various techniques presented in chapter 3 suggest the general direction how to approach the
problem: Object oriented design provides a way to decouple the implementation from its interface.
The indirection used by STL shows a convenient way of applying (static) polymorphism to decouple
algorithms from the data structures using indirection for the accesses. This chapter presents a strategy
how to implement graph algorithms using mainly the techniques from the previous chapter such that
the implementation is reusable to a high degree. As far as possible this strategy is formalized into
(domain specific) design patterns. Before going into the details of the individual building blocks, a
sketch of the overall structure of the concept is given.

4.1 The Big Picture

For a reusable implementation of an algorithm it is necessary to be applicable to different data struc-
tures and in (at least slightly) different situations. Also, the behavior of an algorithm can often be
modified by using different subalgorithms, different data structures to store additional information,
or different conditions to terminate. A truly reusable implementation of an algorithm would allow to
modify these parameters in some way instead of using a hard–wired method which appeared to be suit-
able when the algorithm was implemented. This also makes the implementation easier because there
is no need to determine the best choice for all situations (which is impossible in most cases anyway).
Instead, only a default may have to be established for the cases where the user of the implementation
doesn’t want to bother about the parameter.

The strategy given here to address the problems with flexible implementations of algorithms is
basically made up of two major parts:

� An indirection is introduced to access the representation. This is used to abstract from the actual
representation of the graph and the data associated with the nodes and edges.

� Algorithms are made first class citizens, i.e. they become classes, and the focus of attention
is shifted from the data structure used to the algorithms: Instead of implementing algorithms
for one specific data structure, algorithms are implemented for all data structures satisfying a
(minimal) set of requirements.

The first thing being discussed is the abstraction from the data structure used to represent the
graph’s structure. There are many possible data structures which might be used to represent the
graph. Apart from different representations for general graphs, there are specialized representations
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for certain classes of graphs, and the possibility to view data structures as graphs although they were
not intended to be viewed as graphs.

The implementation should be applicable to all representations that are theoretically suitable. The
trivial approach, i.e. converting the input data structure to some data structure used by the implemen-
tation of the algorithm, applying the algorithm and then converting the result back, if necessary, has
some disadvantages: This approach is likely to be inefficient, e.g. if the algorithm can perform in sub-
linear time. In addition the conversion might lose knowledge about the structure of the graph which
could be exploited by a specialized subalgorithm otherwise or it might be necessary to maintain a
mapping between the two representations to allow a conversion back to the original representation.

Another alternative is to use the common denominator of all suitable graph representations as a
base class for the graph representations. This approach also appears to be too restrictive: Not all
representations support the same operations, e.g. insertion or removal of an edge is not possible with
all graph representation (it might be impossible to add an edge to a planar graph or to remove an edge
from an interval graph while still maintaining the intrinsic properties of the respective graphs).

Algorithm/Client

Iterator Adjacency

Iterator Iterator
Data

Accessor

Abstraction

Representation

Figure 4.1: Components of the abstraction from the representation

The approach taken here is to separate the abstraction into multiple components which might
interact with each other where it makes sense (see Figure 4.1). An implementation of an algorithm
just uses the services provided by the components it requires. Here is an overview of the main services
provided by the abstraction:

� A specific node from the set of nodes or a specific edge from the set of edges is identified
using an iterator: An iterator identifies one element from a set and can be advanced to identify
another element. Of course, different iterators are used to access the set of nodes and the set of
edges.
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� Access to the edges incident to some given node
�

is provided by an adjacency iterator: An
adjacency iterator is used to explore the neighbourhood of the node

�
. It can be advanced to

identify the next node in the adjacency list of
�

and the corresponding edge.

� The data associated with the nodes or the edges is accessed using data accessors: An iterator
identifying the object whose data is to be accessed is passed to a data accessor which in turn
extracts or stores one data item associated with the corresponding object.

Other needs for non-mutating accesses are either bound to graphs with a special structure (e.g. the
dual edge in planar graphs) or can be created using a combination of the accesses above. However,
if necessary or advantageous additional facilities can be required by the algorithm (e.g. because the
algorithm makes use of a special structure of the graph) such that only graph representations can be
used which fulfill these requirements.

Merely reading the structure of a graph is not always sufficient. Instead, algorithms often need
to modify the graph’s structure. If the modified structure is part of the result, these algorithms re-
quire additional capabilities of the graph representation: If the purpose of the algorithm is to modify
the structure, the corresponding operations have to be supported for the representation. Thus the im-
plementation can require some graph traits which provide a generalized interface to the necessary
mutating operations and whose implementation is tailored to the corresponding representation. If the
modifications are only auxiliary, a decorator using the normal accesses (iterators, adjacency iterators,
and data accessors) and providing the necessary mutating operations can be used which captures the
temporary changes and acts like the actual graph representation to the implementation of the algo-
rithm. However, in cases where the original graph representation supports the modifications, it is also
possible to omit the intermediate decorator to gain efficiency.

Whatever the requirements imposed on the representation are, the actual accesses are done using
an indirection: The iterators, the data accessors, the graph traits, and the decorators. This decouples
the implementation from the representation of the graph. However, this is not sufficient to make an
implementation of an algorithm as reusable as possible: The behavior of the algorithm itself often
has to be augmented and/or modified. An idea leading towards algorithms which are themselves
more flexible is to make algorithms first class citizens: Every algorithm becomes a class instead
of a function. One advantage is the control provided over the various stages of the life-time of an
algorithm: Instead of having a monolithic function which performs the whole task of the algorithm,
the behavior can be controlled at least between the different phases of the algorithm without forcing
the client to manage the data used by the algorithm. The main phases common to all algorithms are:

� The construction, establishing the general framework in which the algorithm is applied: The
initial subalgorithms, data structures, and access methods for the graph representation used are
determined. If it is possible that the algorithm is preempted, it might even be possible to replace
these components while the algorithm is applied.

� The initialization, specifying the actual problem instance and establishing the necessary invari-
ants of the algorithm. Note that it is not necessary to couple the complete initialization with the
implementation of a certain graph algorithm: Instead, it is possible to factor out the initializa-
tion into a separate initializer algorithm, being usable as initialization for different algorithms
with similar preconditions.

� The core of the algorithm, solving the problem at hand. This phase may be further subdivided
into the sequential application of several different subalgorithm if it is possible to subdivide the
algorithm into algorithm steps and/or into equal sequential steps resulting in a loop kernel.
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� If necessary or advantageous some post processing is done after the main part of the algorithm.
The same post processing might be used for different algorithms like the same initialization can
be used for different algorithms.

The two main techniques used to obtain flexible implementations are abstraction from the data
structures using an indirection and implementing algorithms as objects. Using these two techniques, it
is possible to focus on the needs of the algorithm, while ignoring the details of used subalgorithms and
data structures. This makes it easy to replace a subalgorithm or a data structure used: The algorithm
depends neither on a certain data structure nor on a certain subalgorithm. Instead, it only depends
on an intermediate interface which can be much more general than the interface of a data structure
or an algorithm. In addition, both techniques have additional effects, like preemptive algorithms
and implicitly stored data, which are explained in this chapter along the detailed description of these
techniques.

Before going on to a more detailed description of the techniques proposed, some goals achieved by
an implementation of a graph algorithm using the proposed techniques are listed.1 This list includes
brief comments how the respective goal is achieved:

� The implementation of an algorithm is based on a graph abstraction which can be realized
by potentially all graph representations that are suitable for this algorithm. In particular it
is not assumed that a certain representation (e.g. an adjacency list or an adjacency matrix) is
used. Such an assumption would hard–wire the graph data structure or at least seriously limit
the choices of the representation used for a graph to which the algorithm is to be applied. If
specific characteristics of the representation are necessary for an algorithm to perform correctly
or efficiently, these should be required in a fashion which does not determine the representation
and which is usable in other situations too.

� Data associated with the nodes or the edges is accessed through an indirection. This allows
to choose a representation which is suitable for a specific application. For example, in one
application it may be impossible or unnecessary to store all data associated with the edges
because the graph is too large and the data can be calculated from data associated with the
nodes (e.g. the “length” of an edge may the Eucledian distance between the nodes). In another
situation, it may be appropriate to store the data with the edges because it is impossible or too
expensive to calculate the data. However, both representation as well as many others can be
chosen.

� It is possible to augment the behavior of the algorithm by additional actions performed during
the algorithm. This can be used to compute additional data depending on the state of the al-
gorithm. For example, the biconnectivity algorithm (see 2.5 on page 19) uses the state of the
graph search to compute the low–point numbers.

� Due to the separation of initialization from the main algorithm, it is possible to establish only
the preconditions used and not yet established. This allows the reuse of an already established
state and to violate assumptions in a controlled fashion: e.g. the augmenting–path algorithm
(see chapter 2.8 on page 23) to solve the maximum flow problem does not make any use of
the fact that it is modifying a valid flow. It maintains the balances between the incoming and
outgoing flows of the nodes independent of a valid flow. There is no point in forcing the flow

1Most of the goals apply to different problem domains directly or in a modified variant too. However, this work is
focused on graph algorithms such that this restriction seemed to be suitable and made the description easier.
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to be a valid one. If an invalid flow is suitable for the application, such a flow can also be
maximized by the algorithm.

� During construction of an algorithm the data structures used are established. This can be used
to keep the data structures used to store auxiliary data flexible e.g. to allow modifications of
the behavior or to use data structures better suited to the data actually stored than some default
choice.

� Used subalgorithms are exchangeable. This is e.g. advantageous if the algorithm is applied to a
graph with a known structure which can be used by a specialized version of the subalgorithm.

The approaches used create some additional overhead due to additional function calls or addi-
tional indirections. Whether this additional overhead is acceptable depends on the alternatives and the
overhead really imposed.

4.2 Abstraction from the Representation

The primary purpose of the abstraction is to allow support for different representations. The aim is
to have just one implementation of an algorithm being applicable to different representations. There
is another use of the abstraction involved: It is possible to wrap the abstraction (or parts of the ab-
straction) into another layer providing a different view of the same object. For example a subgraph
can be modeled by the access facilities of the actual representation and a boolean mark for every node
and/or edge indicating whether it is part of the subgraph: A decorator for the original representation
checks the boolean mark and simply ignores the nodes and edges which are not part of the subgraph.
Another example would be a decorator which (virtually) adds some edges to the representation e.g.
by storing additional information for every node indicating whether there are additional edges (and
which edges). When asked for the adjacent edges of a node the decorator returns the “normal” edges
plus the ones stored with the node. An example of this technique is shown in section 4.2.3.

To make both the actual abstraction and the decorators as flexible as possible, the abstraction is
divided into several more or less related components:

� node iterators for a “set view” of the nodes

� edge iterators for a “set view” of the edges

� adjacency iterators for a “structural view” of the graph

� data accessors to access data associated with nodes or edges

� mutators to allow modification of the structure

Iterators are used to sequentially access all objects from a set. For example a node iterator is used
to access the nodes of a graph. The iterator identifies one element from the set and can be moved to
the next element until all elements have been seen. The operations possible on the specific iterator
are very limited: Apart from advancing the iterator there may be a possibility to convert a given
iterator into another iterator (e.g. a node iterator into an adjacency iterator for the indicated node)
or a possibility to get another iterator (e.g. an adjacency iterator for the current adjacent node of an
adjacency iterator). Algorithms do not require the iterator to provide direct access to data associated
with the identified object, although an iterator might be implemented in a way which immediately
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allows access to associated data. Instead, data accessors are used by the algorithms for accesses to
associated data: A data accessor uses a given iterator to provide access to some data associated with the
indicated object. The data accessor “knows” how the association between the object identified by the
iterator and the required data has to be handled and also “knows” how the required data is represented:
The implementation of the algorithm can completely ignore these details of the representation.

Algorithms modifying a graph can do so using a builder [12]: The builder is an object which
supports the modifying operations used by the algorithm. The builder itself delegates the modification
request to the graph representations. In doing so, it can perform additional processing or it can delay
modifications, e.g. to avoid temporary violations of a certain property of a specialized graph repre-
sentations. In addition, this way the interface of different representations can be unified: The builder
maps the used interface to the respective interface used by the representation.

This approach provides some flexibility but does not help if the representation does not allow
the required modifications. In this case, a modifier can be used: The access methods provided by the
representation are used to provide a modified view to the algorithm: The algorithm gets passed objects
conforming to the same requirements as the original object but which behave (slightly) differently to
take the applied modifications into account. For example a modifier can consist of an adjacency
iterator which just skips edges registered with the modifier as deleted edges.

To allow a maximum of flexibility for the representation, an algorithm should only require the
necessary components: For an algorithm with low demands a simple data structure providing only
some very specific accesses might suffice for the representation. Algorithms with a lot of requirements
will need more complex, more specialized accesses to the graph which might impose some restrictions
on the representation.

4.2.1 Adjacency Iterator

Intent

Make the access to different graph data structures uniform.

Motivation

Section 2.3 beginning on page 26 introduced several fairly different computer representations of the
structure of graphs. It is desirable to apply an implementation of an algorithm to all or at least most
graph representations, including existing representations provided by some packages.

As an example for typical access to a graph’s structure a simple graph search, e.g. BFS (see Section
2.2 on page 13), can be used: The search operates by finding all adjacent nodes not yet labeled from
the current node. Thus, BFS needs to access the adjacency list of a given node. If the graph is
represented using adjacency lists, an iterator passing this list is used. If the graph is represented using
an adjacency matrix an index for every row of the column corresponding to the nodes is used. For
a grid graph the direction indices � ��� ��� � 	 � 	!��� ��� ����� �

and � % ��� are used. And so on. The point
here is: All those graph data structures have their own interface to the structure of the graph. An
implementation of an algorithm should be free from the details how the structure is accessed to make
it applicable to all structures.

To be able to apply an implementation of an algorithm to all these different representations, an
indirection is introduced, the adjacency iterator, which provides access to the adjacency list of the
used representation: The structure of the graph. While the adjacency iterator only provides (direct)
access to the structure, Data Accessors (see 4.2.2) are used to access data which is associated with the
objects present in this structure, i.e. the nodes and the edges.
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An individual adjacency iterator is used to explore the neighbourhood of a node, i.e. the nodes
adjacent to this node. First of all, it is associated with a node. In addition, it is in one of two states:

valid it identifies a current adjacent node and optionally a current edge
invalid there is no current node (and thus no current edge) to be identified

The valid state of an adjacency iterator indicates that there is still some structure to explore. Cor-
respondingly, the invalid state indicates that the whole neighbourhood of the node has been examined.
An adjacency iterator is actually an iterator with special support for access to the adjacent node: Ba-
sically, it is used to traverse the set of adjacent nodes and, implicitly, the incident edges.

Instead of defining a standard interface to all graph data structures, only the interface for the
adjacency iterator is defined. Since the adjacency iterator is an entity of its own, it can be added to
existing graph representations implementing it in terms of the corresponding representation. Thus,
using an adjacency iterator decouples the algorithm from the details of the graph representation. In
fact, an adjacency iterator allows to view entities as a graph which were not intended to be accessed
as graphs when they were designed and implemented: It must be possible to implement an adjacency
iterator for the data structure.

Applicability

Use an adjacency iterator when

� you want an implementation of an algorithm to be applicable to a variety of different graph
representations.

� you want to provide a restricted view of a graph’s structure to an algorithm: You can use a
decorator (see [12] for a description of the pattern decorator for an example) to hide parts of
the structure.

� you want to temporarily augment the structure of the graph. Again, this can be done by a
decorator (see 4.2.3 for an example).

Structure

GraphRepresentation1

ConcreteAdjIt1

GraphRepresentation2

ConcreteAdjIt2

Client AbstractAdjIt

Participants

� AbstractAdjIt

– declares the interface to access the adjacency list of a node.

� ConcreteAdjIt
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– identifies a node
�

whose neighbourhood, i.e. the nodes in
� 	 + ��� � , is investigated.

– defines an access method for the adjacency list )B*-, ��� � for node
�
.

– identifies a current node
� � )B*-, ���
� adjacent to

�
.

– provides a mechanism to create a new ConcreteAdjIt to access the adjacency list of the
current node

�
.

– implements the interface of AbstractAdjIt.

� GraphRepresentation

– represents the graph accessed using ConcreteAdjIt

– might be some data structure which does not represent a graph but which is interpreted as
a graph.

– is used by ConcreteAdjIt to implement the interface defined by AbstractAdjIt.

� Client

– uses AbstractAdjIt to access the structure of a graph.

Collaborations

� A ConcreteAdjIt uses entities from the corresponding GraphRepresentation for the represen-
tation of its state. The operations on a ConcreteAdjIt are partially delegated to operations on
entities of the GraphRepresentation.

� A ConcreteAdjIt is used to identify a node or an edge incident to a certain node. It is used
together with another abstraction, e.g. a data accessor or the graph representation, to perform
operations on the node or the edge identified.

Consequences

Here are some of the consequences when using a Adjacency Iterator:
� The adjacency list )B*-, ��� � of a node

�
is accessed through the adjacency iterator. Thus, there is

no knowledge about the representation of the adjacency list coded into the implementation of
an algorithm: There is only one implementation of an algorithm necessary to work on all graph
representations which support an adjacency iterator.

� Because the graph is accessed exclusively through the adjacency iterator, there is no access to
the graph as a whole, e.g. to determine the number of nodes in the graph. If such access is
necessary, a different abstraction has to be used to support access not provided by the adjacency
iterator. Such a need might impose serious restrictions on the possibility to virtually modify the
structure of the graph using decorators.

� The algorithm does not work immediately on the representation. Instead, the adjacency iterator
introduces an indirection. This additional indirection might cause some overhead resulting in
a less efficient implementation of an algorithm. However, if the representation is designed to
support adjacency iterators, the performance penalty should be acceptable.

� It has to be ensured that the entity referred to by the adjacency iterator is still existent when it
is accessed. This is due to the separation of the interface and the representation: The object
constituting the interface can still exist although the representation is already destructed.
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Sample Code

As an example, a linear container representing a dictionary of words is interpreted as a graph: The
words of the dictionary are the nodes. Between two nodes there should be an edge if the two words
differ in just one position. As a container, a list of strings, i.e. a list<string> in C++ notation, is
used.

#include <list>
#include <string>
#include <algorithm>

int distance(string const &str1, string const &str2)
{
int dist = 0;

if (str1.length() == str2.length())
{
string::const_iterator s1 = str1.begin();
string::const_iterator s2 = str2.begin();
string::const_iterator end = str1.end();

for (; s1 != end; ++s1, ++s2)
if (*s1 != *s2)
++dist;

}
else
dist = -1;

return dist;
}

The first thing is to make necessary declarations known by including the corresponding header
files: list for the declaration of the list class, string for declarations of the string class, and
algorithm for the declaration of the copy and find algorithms. Next, a function is defined which
computes the Hamming–distance of two strings: The Hamming–distance of two strings with the same
length is the number of positions where the strings differ. Thus, there is an edge between two nodes
if the distance between the corresponding strings is one. The function distance() is used to
determine the next node to be considered adjacent in the adjacency iterator AdjIt:

class AdjIt
{
typedef list<string>::const_iterator NodeIt;

private:
NodeIt const begin, end; // the list of words
NodeIt const node; // the node
NodeIt adj; // the current adjacent node
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void find_adjacent()
{
while (adj != end && distance(*node, *adj) != 1)
++adj;

}
public:
AdjIt(NodeIt b, NodeIt e, NodeIt n):
begin(b),
end(e),
node(n),
adj(b)

{
find_adjacent();

}

bool valid() const { return adj != end; }
string value() const { return *node; }
AdjIt cur_adj() const { return AdjIt(begin, end, adj); }
AdjIt &operator++() { ++adj;find_adjacent();return *this;}

};

The graph representation is in this case a nor-
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Figure 4.2: Representation of an AdjIt

mal linear list containing the nodes. Whether two
nodes are adjacent is determined from the values of
the nodes: There is an edge between two nodes if a
certain condition is true, in this case if the Hamming–
distance between the strings corresponding to the no-
des is one. The same scheme can be used for arbitrary
binary predicates: If the predicate evaluates to true
for two given nodes, there is an edge between these
two nodes. The adjacency iterator is implemented
straight forward: The representation consists of two
iterators begin and end for the start and the end of
the list, as is convention for STL, the iterator node identifying the node whose neighbourhood is
searched, and the iterator adj identifying the current adjacent node. The adjacency iterator is in-
valid, if the current adjacent node is equal to the end of the list. Figure 4.2 shows how an AdjIt is
represented with the list and nodes used in the example below: The adjacency iterator searches the
neighbourhood of the node root pointed to by the member node. The neighbours of a node are
the nodes labeled with a word differing in only one position from root, i.e. the nodes labeled with a
word having Hamming–distance one from the word root. The current adjacent node, identified by
the member adj is foot. Moving the adjacency iterator to the next adjacent node, searches the list
between adj and end for the next word differing in just one position from root. This would result
in adj pointing to roof in this case.

The constructor of the adjacency iterator makes sure that the members are in a consistent state: All
but the member adj are initialized from the arguments passed to the constructor. The member adj
is initialized with an iterator identifying the first node in the list having Hamming–distance one from
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Figure 4.3: The example graph

the adjacency iterator’s node. This node is searched using the function find adjacent() which
is also used by the increment operator to move the adjacency iterator to the next adjacent node: This
function searches through the list until a node n is found for which distance(node, n) yields
one or the end of the list is reached.

All other functions are just used to query the state of the adjacency iterator: valid() indicates
whether there is a current adjacent node. If there is a current adjacent node, the function cur adj()
can be used to obtain an adjacency iterator positioned on the current adjacent node. The function
value() is not part of the required interface for adjacency iterators: It returns the string associated
with the node. Normally, such data is retrieved using a Data Accessor (see 4.2.2). However, this
function is convenient in a small program demonstrating the use of an adjacency iterator to access all
nodes adjacent to one given node:

int main()
{
char const *init[] = { "boat", "bolt", "book",

"boom", "boot", "bout",
"foot", "roof", "rook",
"room", "root", "rout"};

int size = sizeof(init) / sizeof(char const *);

typedef list<string> List;
List lst;

copy(init, init + size, back_inserter(lst));

List::iterator root = find(lst.begin(), lst.end(), "root");
AdjIt adjit(lst.begin(), lst.end(), root);

for (; adjit.valid(); ++adjit)
cout << adjit.cur_adj().value() << " ";

cout << endl;

return 0;
}
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The example program first generates a list containing some words. The words used are stored in
an array of string literals. These strings are put into a list using the STL algorithm copy(). This
list is interpreted as a graph using the adjacency iterator class AdjIt. The corresponding graph is
depicted in Figure 4.3. The STL algorithm find() is used to locate the element representing the
string “root” within this list. This element is used as the node associated with the adjacency iterator
root. Finally, all nodes adjacent to the node root are accessed with the help of the adjacency
iterator. The strings associated with the corresponding nodes are printed: This prints all strings from
the list having a Hamming-distance of one from the string “root”. Thus, the output of the program is:

boot foot roof rook room rout

This is a somewhat artificial application of an adjacency iterator. More realistic applications of
adjacency iterators require some algorithm which would take to much space to be presented here.

4.2.2 Data Accessor

Intent

Make the use of data independent from the data’s representation.

Motivation

Algorithms, including algorithms on graphs, often perform some operations working on or depending
on some data with multiple possible representations: The data manipulated can be calculated when
needed, it can be stored as needed by the algorithm or, to be more efficient, in a more compact form,
etc. In addition, for sets of objects like the nodes or edges of a graph, there has to be decided where the
data is stored: As part of each node structure or each edge structure, in a container separated from the
graph and indexed by nodes or edges, and so on. Even with one given representation, there are some
choices: Consider an edge where some data is immediately stored with the representation of the edge.
To access the data, it is necessary to name it. However, different algorithms can have different names
for (or interpretations of) the same data: What is a length for one algorithm might be interpreted as a
weight or a capacity by another algorithm.

AbstractDataAccessorClient

bool get(Node n)

void set(Node n, bool val)

bool get(Node n)

void set(Node n, bool val)

ArrayDA

bool get(Node n)

void set(Node n, bool val)

StructDA

map<Node,bool> mark

mark[n] = val; return mark[n];n.mark = val; return n.mark;

Figure 4.4: Two styles to store some data
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A typical use of data associated with the nodes of a graph, is to mark nodes with a boolean label.
This is e.g. used to indicate that a node has been processed in a graph search. There are multiple
possibilities to represent the mark for a graph. One method is to reserve a member of the node’s
struct, say mark, to be used to mark the nodes.2 Another approach is to use an external array or map,
indexed by the nodes, to store the mark. However, the basic accesses made to either representation
are very simple: The current value of the mark of a node is retrieved or a new value is stored for some
node. Thus, there are just two operations, get() and set(), which can be bundled together into an
object describing the method used to access the data: A data accessor is used for the accesses.

Using the structure in Figure 5.4. it is possible for the client to ignore the details of how the data
is represented: The client uses the interface defined by AbstractDataAccessor to set and get
the mark associated with a node. Two possible representations are shown: If a StructDA is used,
the mark is directly stored in the node, in the depicted situation in the member mark of a Node. The
number of marks possible with this approach is limited by the number of members reserved to be
used as marks in the structure Node. Another possibility is to use an ArrayDA, which uses a map to
associate a boolean label with the nodes. Obviously, there can be multiple instances of the ArrayDA
allowing as many marks as needed.

These two data accessors only store or retrieve the mark. It would also be easy to provide data
accessors which do operation counting, update another data structure, or do some animation. Still, all
this would be transparent to the client.

The use of data accessors is not limited to graphs: They are useful whenever some data is to be
associated with the members of a set. In the case of graphs the relevant sets are the nodes and the
edges.

Applicability

Use a Data Accessor when

� different representations of the data are reasonable. In this case, the implementation should not
be limited to use just one representation. For example, the augmenting path algorithm (see 2.8)
uses the residual capacities of the edges, which can be represented directly or as the difference
between the total capacity and the current flow.

� different names are used for the same data in different algorithms: If the data would be accessed
directly, e.g. as the member of a struct, the algorithms (actually the people who implement the
algorithms) would have to agree on a common name to use.

� multiple instances of similar data, e.g. multiple marks, are needed. This applies especially in
contexts where algorithms are to be combined in a flexible way such that an algorithm might be
used multiple times on the same structure.

� the data accessed is not stored as it is viewed by the algorithm: The actual data can be calculated
from other data yielding the possibility to store the data only implicitly. For example the dis-
tance between to adjacent nodes can be stored with the edge but it can also be calculated from
the coordinates of the two nodes, if the distance is the Eucledian distance between the nodes.

2It is immediately obvious that one mark is not sufficient for all purposes: More than one mark is necessary. Thus, the
name of the struct’s member has to be varied or an array has to be used. This is just another example of why the name might
change although the interpretation remains the same.
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� accesses to the data need additional processing like accounting, operation counting, some sort
of animation, or updates of other data structures.

� the data accessed is stored in a data base, should be persistent, or is accessed through some cache
mechanism: Processing such data often needs special procedures to access the data which can
be implemented by the data accessor.

Structure

AbstractDataAccessorClient

bool get(Iterator)

void set(Iterator, val)
Iterator

bool get(Iterator)

void set(Iterator, val)

bool get(Iterator)

void set(Iterator, val)

ConcreteDataAccessor1 ConcreteDataAccessor2

Participants

� Iterator

– Identifies an object to be accessed. The important part is hereby to provide enough infor-
mation to the ConcreteDataAccessor to locate the data associated with the object.

– The iterator is not necessarily a “real” iterator but can be any other object identifier, like
an index into an array.

� Client

– Uses an iterator to identify an object.

– Wants to access (store or retrieve) data associated with the object identified by the iterator.

� AbstractDataAccessor

– AbstractDataAccessor defines the interface how to access the data: The type(s) of the
supported iterator(s), the type of the data returned from get() and passed to set(),
and the access functions.

– AbstractDataAccessor is either a base class with pure virtual functions such that dynamic
polymorphism has to be used to define a concrete data accessor or a set of requirements
such that static polymorphism can be used.

� ConcreteDataAccessor

– Implements the interface defined by AbstractDataAccessor.

– Given an iterator, the class ConcreteDataAccessor “knows” how to access the associated
data.

– Encapsulates the details of the access.
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Collaborations

The client passes an iterator to the data accessor. The iterator provides enough information to the
data accessor such the data accessed can be determined. Depending on the used data accessor this
can e.g. mean that the iterator provides a pointer to a structure, which is used by the data accessor
just to selects a member. Another data accessor might retrieve a unique integer identifying the object
whose associated data is to be accessed from the iterator. This integer can then be used to lookup the
accessed data in a map.

Consequences

Here are some of the consequences when using a Data Accessor:

� The data accessor introduces an indirection which is otherwise not present. Depending on the
implementation this can result in a performance penalty.

� It is possible that an iterator referring to one set is passed to a data accessor used to access the
data associated with the objects from another set. This would lead to inconsistencies or serious
program errors.

� An algorithm need not to care about the details of the representation of used data. It can evan
be applied to different representations without being changed.

� It becomes possible to do additional actions like some animation or access counting by just
modifying the data accessor: It is completely transparent to the algorithm that this is done.

Implementation

� Boolean marks are used for many purposes. After each use, the mark has to be reset to an initial
value � � � � before it can be reused. In cases where an algorithm normally explores only a part
of the whole graph, e.g. a path search algorithm, it may be useful to avoid touching all nodes or
all edges. Instead of explicitly initializing the data, a “versioning” mechanism can be used: The
marks are not represented by a boolean value but rather by an integer. An integer value � 	 � �B% � �
not used before for that purpose marks the nodes which are already explicitly labeled since the
last resetting and which have the opposite value of the intial value � � � � . When the marks are
reset, this is done simply by using a new value for � 	 � �B% � � : � 	 � �B% � � is replaced by � 	 ���B% � � � �
and in addition a new value for � � � � is saved which might be different from the previous initial
value. This technique can be extended to arbitrary data: In this case a combination of an integer
used for the ageing and the actual data is stored: The data is valid, if the stored age corresponds
to the current age. Otherwise, the value is some old data and the initial value will be returned
for retrieving operations.

� If the data stored is not a simple value like an integer or a boolean value, but rather a structure
consisting of multiple fields, it is useful to distinguish between data accessors really storing the
data somehow, called lvalue accessors henceforth, and data accessors returning a calculated
value called rvalue accessors: Modifications to only a part of the structure need not touch the
whole structure. However, to modify just a part of a structure, direct access to the representation
has to be provided. This access cannot be provided for rvalue accessors because there is no
representation which can directly be modified: The whole structure has to be retrieved to modify
only the part without loosing the remaining data and the whole structure has to be stored after
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the modification. For lvalue accessors this is not necessary: It would be possible to store only
the modified part without touching the other members of the structure. Thus, the distinction can
be used to gain efficiency.

Sample Code

The sample data accessor merely adds the possibility to associate data with strings: The data accessor
simply stores the data associated with a string in a map and retrieves it from there. Actually, this is
precisely the behavior of a map. The key difference is that the user of the data accessor is not aware
of the use of a map. Some other data structure, e.g. a hash, could also be used.

The core of the data accessor is object containing the map: The data accessor object, in this case
StringDA. In this implementation, the type of the data stored is left as template argument. Apart
from the the map storing the data associated with the strings called i data, the object also stores a
default value for strings without associated data: i def.

#include <string>
#include <list>
#include <map>
#include <algorithm>

template <class T>
class StringDA
{
private:
typedef map<string, T, less<string> > DAMap;

DAMap i_data;
T i_def;

public:
typedef T value_type;
StringDA(T const &d): i_def(d) {}

DAMap const &data() const { return i_data; }
DAMap &data() { return i_data; }
T const &def() const { return i_def; }

};

The only member function which should really be part of the data accessor class is the constructor:
It takes the default value as argument used to initialize the member i def. All other member function
are necessary to work around insufficiencies of the current compiler: The two template functions
get() and set() defined below, should actually be member functions. Unfortunately, there are only
few compilers supporting member templates which would be necessary... Hence, the class StringDA
provides access to its internal representation through some member functions. These are used by the
functions get() and set() to retrieve or store data for a string defined by some iterator:

template <class T, class Iterator>
T get(StringDA<T> const &da, Iterator const &it)
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{
map<string, T, less<string> >::const_iterator mit;
mit = da.data().find(*it);
return mit == da.data().end()? da.def(): (*mit).second;

}

template <class T, class Iterator>
void set(StringDA<T> &da, Iterator const &it, T const &val)
{
da.data()[*it] = val;

}

This data accessor can basically be used to store some data for the nodes of the graph from the
sample code for adjacency iterators: In this example, the nodes are uniquely identified by a string. The
only modification necessary would be to use the member function ’value()’ of the adjacency iterators
to obtain the string of the node identified by the iterator. This sample code does not use this member to
allow a simple demonstration. The following program demonstrates a simple application of this data
accessor: The set of strings identified by two iterators and a data accessor is passed to the function
process(). Each string stored in the list is associated with a value calculated from the string. After
this is done, the value is retrieved and printed.

template <class Iterator, class DA>
void process(Iterator const &beg, Iterator const &end, DA &da)
{
for (Iterator it = beg; it != end; ++it)
set(da, it, (*it)[0] + 256 * (*it)[3]);

for (Iterator it = beg; it != end; ++it)
cout << *it << ": " << get(da, it) << endl;

}

int main()
{
char const *init[] = { "boat", "bolt", "book",

"boom", "boot", "bout",
"foot", "roof", "rook",
"room", "root", "rout"};

unsigned int size = sizeof(init) / sizeof(char const *);

typedef list<string> List;
List lst;
StringDA<int> da(0);

copy(init, init + size, back_inserter(lst));

process(lst.begin(), lst.end(), da);
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return 0;
}

The same effect can be obtained with a much simpler data accessor, too: If the set() function
does not do anything and the get() function calculates the corresponding value, the behavior would
be the same. Below is a corresponding data accessor. Of course, this data accessor would not be
suitable for any other purposes.

class SimpleDA {};

template <class Iterator>
int get(SimpleDA const &, Iterator const &it)
{
return (*it)[0] + 256 * (*it)[3];

}

template <class Iterator>
void set(SimpleDA const &, Iterator const &, int) {}

If an object of this data accessor is passed to the function process(), the data stored for each
string will be ignored. Instead, the data is calculated immediately from the string: This is an example
for implicitly stored data.

4.2.3 Modifier

Intent

Allow auxiliary modifications of a graph’s structure without really changing the graph.

Motivation

To get a problem instance passed to an algorithm into some normalized form, algorithms often apply
some auxiliary transformations to the input. For example, algorithms solving a multi-source/multi-
target maximum flow problem add a “super source” and a “super target” to the problem instance
(see 2.6). These two new nodes are then connected with the sources and targets of the original input
resulting in a single source/single target maximum flow problem which can be solved with the corre-
sponding algorithms. When the solution is computed, the auxiliary super source and super target are
removed to get a solution to the original problem.

Although this approach causes no problems in theory it does so in practice:

� The required operations for the transformations are not possible with some graph representa-
tions. For example it is impossible to add a node or an edge to a grid graph unless there is
special support to add some nodes and edges to the grid violating the property that the graph
forms a grid.

� It is necessary to keep track of the modifications: Otherwise the auxiliary modifications can-
not be undone afterwards and would be part of the result. Depending on the modifications
made, this can be rather complex. For example when parallel edges are removed if an edge
is contracted, the implementation has to keep track of the removed edges to insert them after
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the algorithm is done. It can be impossible to save the attributes associated with an edge when
removing it, because the algorithm does not necessarily know about all attributes.

A completely different approach to do auxiliary modification is to apply the modifications to a
decorator [12] of the original graph: The decorator provides a modified view of the graph to the
algorithm. The use of the decorator is transparent to the algorithm.

Consider the problem noted above: A multi source/multi target flow problem on a grid graph is
to be solved. The algorithms to solve this problem convert the problem into a single source/single
target problem by adding a super source and a super target. The resulting problem is then solved
with a corresponding algorithm. However, a grid graph has no possibility to add two additional nodes
and the corresponding edges. 3 There is in fact no possibility to change the structure of a grid graph
directly. However, there is also no real need to modify the structure: It is sufficient if the abstract
structure seen by the algorithm appears to be modified. This view is provided by a modifier (see
Figure 4.5).

Grid Graph

Modifier Total

Figure 4.5: A decorator modifying the view of a grid graph

A modifier provides two things: An interface to do some modifications to a graph structure and
a new view to the structure of a graph. A modifier combines some aspects of a decorator which
provides a different view to an object and some aspects of an adapter which provides a new interface
to a given class. It operates by storing information about the modifications and controlling the original
interface to the graph’s structure based on this information. This is done by providing a complete new
interface made up of data accessors and adjacency iterators. The description how this work uses the
term “original” to refer to something being part of the interface of the input and the term “adapted” to
refer to something being part of the interface provided by the modifier:

In the multi source/multi target example, an adapted adjacency iterator can either be positioned
on an inserted node or on a node in the original graph. If it is positioned on an inserted node, all
edges incident to this node are not present in the original graph and are thus also inserted. In this case,
the adapted adjacency iterator iterates over an adjacency list maintained by the modifier for the two
new nodes. If an adapted iterator is positioned on a node which was present in the original graph, it
uses an original adjacency iterator to access all edges present in the original graph and an additional
partial adjacency list maintained by the modifier for the inserted edges. Such a list is maintained for
every node incident to an inserted edge. Accessing the edges incident to a node present in the original
graph can e.g. be done by first accessing the inserted edges using the modifier’s adjacency list for the
corresponding node and then using the original adjacency iterator to access the original edges.

When adding a super source and a super target to a graph, the number of nodes inserted is limited
by two. Thus, in the above case the modifier is quite simple: It always has two new nodes, and

3Of course, it would be possible to augment the grid graph by implementing a feature for the grid graph which allows
certain modifications. Since such a feature is specific to the grid graph and might be insufficient for certain application, this
approach is not reasonable.
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every node present in the input is incident to at most two inserted edges. Thus, the modifier can be
implemented using two boolean marks for the nodes and two lists: One mark indicates whether the
node is connected to the super source, the other mark indicates whether it is connected to the super
target. For each of the two new nodes, a list is used to store original adjacency iterators identifying
the nodes which are adjacent to the corresponding new node.

This nearly suffices to provide a new view to the graph. The only remaining problem is to store
and retrieve data associated with the nodes and the edges. This is done by providing adapted data
accessors, which use original data accessors to access data associated with the original nodes and
edges. For the new objects, the data is maintained by the adapted data accessor e.g. in a map. To
do this efficiently, the adapted adjacency iterator collaborates with the new data accessor by telling
them whether the identified object is a new one. If data associated with a new object is accessed, the
adapted adjacency iterator also provides a unique ID which, can be used to find the data stored in the
map.

Applicability

Use a modifier when

� auxiliary modifications have to be made to a data structure which does not support the modifi-
cation operations.

� the exact data structure is not known. A modifier can be used in this case to reduce the require-
ments imposed on the used data structure.

� modifications have to be made to a structure which does not support the necessary modifica-
tions.

� temporary modifications are made which need to be undone: Since the modifications are not
really done, there original structure is kept. This is especially useful when the temporary modi-
fications include the removal of objects with additional attributes: It is, in general, not possible
to save and restore the attributes as the algorithm might have only access to a subset of all
attributes.

In cases where the original data structure already provides the necessary operations to restore
the graph when the temporary modifications are no longer necessary, a modifier can be used to
record the modifications and undo them later.

� the algorithm has only a view to a part of the graph but the isomorphism between the part and
the whole needs to be maintained: Instead of creating a separate representation of the part, the
modifier hides everything which should be invisible to the algorithm.
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Structure

Modifier

Original AdjIt Modified Data AccessorModified AdjIt

Abstract AdjIt

Algorithm

Abstract Data Accessor

Orginal Data Accessor

Participants

� Algorithm

– The algorithm uses some data structure(s) to operate on. The data structure is not hard
coded but rather defined through an abstract interface, AbstractAdjIt and AbstractDataAc-
cessor in this case (potentially there are more entities).

� Modifier

– The modifier stores the information about modifications apparently applied to the data
structure.

– The modifier provides the interface used to modify the data structure. This interface may
be potentially visible to the algorithm in which case the modifier conforms to the interface
of some builder.

� AbstractAdjIt, AbstractDataAccessor

– The Abstract... classes define the interface of the abstraction used by the algorithm.

– General modifiers which are not specific to the data structure used, use this interface for
their service, too. In this case, it is normally necessary that the interface of the Abstract...
classes support a mechanism create objects of the concrete type.

� OriginalAdjIt, OriginalDataAccessor

– The Original... classes implement the access to the actually used representation.

� ModifiedAdjIt, ModifiedDataAccessor

– The Modified... classes use objects of the corresponding Original... class for the main part
of their behavior.

– A reference to the modifier object is used to get the information about modifications ap-
parently applied to the data structure and to access global information necessary.

– Accesses to a Modified... object check whether there is a modification applied: If this is
not the case, the request is delegated to the Original... object. Otherwise, the modification
is taken into account appropriately. For example, if the modifier allows removal of edges,
the method to position on the next edge might use an OriginalAdjIt which is repositioned
as long as removed edges are encountered.
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Collaborations

The Modifier object stores the information about applied modifications. This information is provided
to the objects used by the algorithm (ModifiedAdjIt, ModifiedDataAccessor). The modifier also pro-
vides some access to the objects managed, e.g. to inserted objects. For inserted objects, the modifier
provides some identification which can be used to get information about these object, to store them in
auxiliary data structure (like partial adjacency lists), or to look up associated data in a map.

Consequences

Here are some of the consequences when using a Modifier:

� The modifier introduces an additional indirection to all accesses to the representation. This
indirection can normally not be avoided. Thus, it may be reasonable to avoid multiple layers of
modifiers, if possible.

� The modifier has often to determine whether there is a modification involved in the access to
some object. For example, if data associated with the objects is accessed, the access meth-
ods differ for inserted objects and original objects. Apart from this conditional processing the
methods to access the data my be less efficient for the data accessor e.g. because data is directly
stored with original object but is stored in a map for inserted objects.

� Using a modifier allows to (apparently) modify a structure which does not support modifica-
tions. This reduces the requirements on representations used and makes an implementation
more general.

� If objects are removed from a data structure, this might result in a loss of information: Data
associated with the objects might be removed, too. As the implementation is not necessarily
aware of all data stored with the removed object there might even be no possibility to restore
the data. Using a modifier, this problem does not occur, as no object is really removed from the
representation (unless the modifier is implemented to modify the representation, of course).

� There is no need for the algorithm to keep track of auxiliary modifications to later undo them if
a modifier is used: The representation is not changed.

� Neither need representations support complex modification like the contraction of an edge nor
need every algorithm using such modification implement them using lower level operations.
In addition, there is no ambiguity what the operation really does if a specific modifier is used
instead of some operations supported by the representation: For example, contraction of an
edge might remove parallel edges and loops or might retain them.

Sample Code

The example shows a modifier used to add two new nodes and some edges between new and original
nodes. This modifier can e.g. be used to convert a multiple source/multiple target problem into a single
source/single target problem. It works quite simple: For each of the two new nodes, called “source”
and “target”, there is a list of adjacent nodes stored using the original adjacency iterators (OA). In
addition, two boolean marks are used for the original nodes: One mark indicates whether the node is
adjacent to the source node. Likewise the other mark is used for the target node.
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#include <list>

// OA is the type of the original adjacency iterator
// SM is the type of the data accessor for the source marks
// TM is the type of the data accessor for the target marks
template <class OA, class SM, class TM>
class SingleSourceSingleTarget
{
private:
typedef list<OA> AdjList;
typedef AdjList::const_iterator ListIt;
typedef SingleSourceSingleTarget SSST;

// node_desc is a bitmask to allow easy detection of
// original nodes: ’desc & original_any? true: false’.

enum node_desc
{
invalid = 0x00, // there is no node
original_node = 0x01, // original node with original edge
original_source = 0x02, // original node with edge to source
original_target = 0x04, // original node with edge to target
source_node = 0x08, // it is the source node
target_node = 0x10, // it is the target node
original_any = 0x07

};

public:
class AdjIt;
friend class AdjIt;

private:
SM source_mark;
TM target_mark;
AdjList source_list;
AdjList target_list;

public:
SingleSourceSingleTarget(SM const &sm, TM const &tm);

AdjIt source() const;
AdjIt target() const;
AdjIt convert(OA const &ai) const;

void add_edge_to_source(OA const &node)
{
set(source_mark, node, true);
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source_list.push_back(node);
}
void add_edge_to_target(OA const &node)
{
set(target_mark, node, true);
target_list.push_back(node);

}
};

In the objects of this class the modifications are stored. The structure of the graph can be modified
using the functions add edge to source() and add edge to target(), which add a new
edge from an original node to the source or the target node, respectively. To provide access to this
new structure, a decorator for the original adjacency iterator is defined:

template <class OA, class SM, class TM>
class SingleSourceSingleTarget<OA, SM, TM>::AdjIt
{
typedef SingleSourceSingleTarget<OA, SM, TM> SSST;
friend class SSST;

private:
SSST const *ssst;
node_desc desc;
OA adjit;
ListIt current;

AdjIt(SSST const *st,node_desc d,OA const &a,ListIt const &c);
static AdjIt create_adjit(SSST const *ssst, OA const &node);

public:
AdjIt();
AdjIt(AdjIt const &);

bool valid() const
{
switch (desc)
{
case original_node: return adjit.valid();
case original_source: return true;
case original_target: return true;
case source_node: return current!=ssst->source_list.end();
case target_node: return current!=ssst->target_list.end();
default: return false;

}
}
bool is_source() const { return desc == source_node; }
bool is_target() const { return desc == target_node; }
bool is_original() const {return desc & original_any!=invalid;}
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OA original() const { return adjit; }

AdjIt cur_adj() const;
AdjIt &operator++ ();

};

This class uses original adjacency iterators augmented with some auxiliary data for the cases
where an additional edge is involved. The enumeration desc is used to tell how the adjacency iterator
is interpreted:
invalid there is no node: the adjacency iterator is invalid
original node an original node, potentially with an original edge
original source an original node with an edge to the source
original target an original node with an edge to the target
source node the source node with an edge to an original node
target node the target node with an edge to an original node

The value original node indicates that an original adjacency iterator is used. Whether there is
an edge associated with the adapted adjacency iterator depends in this case on the state of the original
adjacency iterator: If this one is valid, there is an edge identified. Otherwise, the adapted adjacency
iterator only identifies a node.

Depending on this value, some of the operations have to perform differently. This is shown for the
member valid():4 If the adjacency iterator identifies an edge incident to the source or the target
node (original source or original target) it is clearly valid. If it identifies an original
node, the original adjacency iterator is used for the representation. Whether the adjacency iterator is
valid thus depends on the validity of this adjacency iterator. Finally, the adjacency iterator is valid
if it identifies the source or the target node and not all edges incident to the corresponding node are
processed.

To make the modification complete, it is necessary to make data accessors work with the extended
graph. This be done for the nodes by storing the data associated with the source and the target node
in the data accessor and delegating the accesses to the data associated with original nodes to a data
accessor for the original graph:

template <class OA, class SM, class TM, class DA>
class SingleSourceSingleTargetDA
{
public:
typedef typename DA::value_type value_type;
typedef value_type VT;

private:
typedef SingleSourceSingleTarget<OA, SM, TM> SSST;

DA original_data;
value_type source_data;
value_type target_data;

public:

4The other member functions are left out for brevity.
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SingleSourceSingleTargetDA(DA const &, VT const &, VT const &);

friend void set(SingleSourceSingleTargetDA const &,
SSST::AdjIt const &, value_type const &);

friend value_type get(SingleSourceSingleTargetDA const &da,
SSST::AdjIt const &adjit)

{
if (adjit.is_original())
return ::get(da.original_data, adjit.original());

else if (adjit.is_source())
return da.source_data;

else
return da.target_data;

}
};

The implementation of this class is straight forward. The constructor takes a data accessor and two
values, used as the initial value associated with the source and the node, respectively, as arguments.
The data accessor is used for original nodes to delegate the request. For the other two nodes the data
accessor fulfills the requests immediately.

4.3 Algorithm Objects

Most graph algorithms use some subalgorithms to perform common tasks or to solve subproblems.
The more basic an algorithm is, the more often it is used by other algorithms. Although it seems to
be sufficient to implement these basic algorithms just once, this is not done because there is a catch:
The algorithms normally need to be augmented by additional actions or termination conditions to be
suitable for specific applications. Consider e.g. graph search (see chapter 2.2 on page 11): It is used by
many graph algorithms as a subalgorithm. While the actual behavior of graph search is to visit every
node once, this is typically not exactly what is desired. Instead, there are other operations necessary:
The nodes have to be numbered (e.g. to determine the connected components) or the structure of
the implied spanning tree has to be recorded (e.g. for a path find algorithm using graph search). In
addition, it is often desired to modify the condition when to terminate the algorithm: e.g. the graph
search used by a path finder must terminate, once the two nodes for which a connecting path is sought
are reached.

There are two common techniques, to get around this problem: The most common approach used,
is to write specialized versions of the algorithms, often tightly coupled with the main algorithm. For
simple algorithms this is easily done. A graph search is implemented in a few lines with the changed
behavior taking up only another few lines typically directly weaved into the algorithm. This approach
has the disadvantage that it is not easy, if possible at all, to use different versions of the subalgorithm
or to use different algorithms achieving the same goal.

To achieve some customization of an algorithm, sometime callbacks are used: A callback is a
function passed to the algorithm which is called in some well defined situation of the algorithm. To
be useful, the callback gets passed some well described arguments defining the current state of the
algorithm. See also the Command pattern in [12]. Normally, there is a possibility to pass a reference
to callback specific data in addition to the function: This data can be used to parameterize the callback
and to keep track of data which should persist between multiple calls of the callback. Using callbacks
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to augment the behavior of an algorithm is more flexible but still has its limitations: All callback
function possible have to be specified and are called whether they really perform additional actions
or use some default callback provided. In addition, the callback is passed the all parameters defining
the current state of the algorithm whether they are needed or ignored and it is normally impossible to
modify the current state of the algorithm.

The approach to pass a callback together with some data specific to this callback to an algorithm
is quite flexible. Actually, this approach is nearly identical to the approach which is suggested here:
Instead of using a callback together with some user defined, callback specific data, an object of a class
representing the algorithm can be used. Using objects instead of functions is more in the spirit of
object orientation and provides some advantages:

� It is more convenient to pass around just one object instead of a pair of a function and some
data.

� It is natural to provide several different member functions which manipulate the same data. This
can be used to give finer control to the algorithm.

� There is not data exposed which is only needed internally to a function.

� Type safety can be maintained even if subalgorithms that require different auxiliary data are
exchangeable.

� The algorithm can be preempted

Algorithm objects make it also easy and natural to assemble complex algorithms from simpler ones:
An algorithm is just constructed with the subalgorithms used. Allowing to construct an algorithm
from a user specified set of subalgorithms also provides a possibility to use different subalgorithms
with an algorithm. The advantage of different subalgorithms is to make use of additional knowledge
instead of using the “best” known algorithm working on a general problem. For example a path
finding algorithm used as part of the augmenting path algorithm can make use of the fact that it is
called several times and maintain some data which will direct the path search for the next call.

4.3.1 Algorithm Step

Intent

Encapsulate an algorithm while making it flexible to be used in different contexts.

Motivation

Algorithms often perform their service using some subalgorithms or auxiliary data structures. To
make an algorithm as general as possible the subalgorithms and data structures used have to expect
the most general input or have to be replaceable.

Consider e.g. the Augmenting Path Algorithm to solve the max–flow problem: This algorithm uses
a path finding algorithm to find an augmenting path in a network. Since there are many different path
finding algorithms with different run–time profiles or characteristics on the found path plus algorithms
taking advantage of properties known for the specific graph class the algorithm is applied on, it is
useful to allow the user to choose the algorithm used. The augmenting path algorithm gets passed an
object of a path finding algorithm and doesn’t bother any further about this object. In particular, the
augmenting path algorithm does not know about additional requirements of the path finding algorithm
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like auxiliary data needed to mark nodes or whether the path finding algorithm stores data which is
used by the next call to the algorithm.

All what is known to the augmenting path algorithm about the path finding object is the behavior
of the object, i.e. that it generates a sequence of edges forming a path between two given nodes, and
the interface: How to specify the start and the end node of the path, how to start the algorithm and
how to retrieve the path.

Applicability

Use the Algorithm Step when

� an algorithm uses one or more subalgorithms for which several implementations can exist.

� several solvers for the same problem can exist.

� the algorithm is used to parameterize another algorithm.

� different interfaces to the same algorithm are useful.

Structure

Data Structure

AccessMethod1(someArgs1)

Algorithm Object

CallAlgorithm1(someArgs1)

CallAlgorithmk(someArgsk)

CallAlgorithm1(someArgs1)

Sub Algorithm Object

Participants

� Algorithm Step

– defines the interface to the algorithm.

– is created with the subalgorithms and data structures specified which should be used by
this object.

� Sub Algorithm Step

– provides a solver for a partial problem.

– can itself use arbitrary subalgorithms and data structures.

– is used through the interface it defines.

� Data Structure

– provides some service required by the algorithm.
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Collaborations

� The algorithm step defers some request to the subalgorithms and use the data structures pro-
vided.

� Clients provide subalgorithms and data structures which match the requirements of the algo-
rithm step if a default should be overridden.

� Clients don’t modify the subalgorithms or the data structures in a fashion which brings the
algorithm step into an inconsistent state.

Consequences

Here are some of the consequences of using the Algorithm Step pattern:

� Encapsulating all data: Nothing has to be known to the client.

� Open for modifications: Subalgorithms and Data Structures can modify the behavior.

� Easy to construct for the user.

� Compared to a normal function, additional programming effort is necessary when creating an
algorithm step due to necessary copy and assignment semantics.

� May provide an interface with different levels of control

� Standard applications can be provided e.g by encapsulating the objects into functions.

4.3.2 Initializer

Intent

Decouple the initialization from the actual algorithm.

Motivation

Normally, an algorithm operates in at least two steps: It first initializes the data structures used before
it starts the main part of the algorithm. The initialization is typically used to establish a certain pre-
condition. For example a solver for the max–flow problem might first establish a legal flow (normally,
the zero flow is used). However, this imposes serious restrictions on the use of the algorithm: It may
be totally reasonable to apply an algorithm where a certain precondition not used by the algorithm is
not fulfilled.

Apart from a violated invariant, there may be some heuristic which generates a partial solution
which should be used as starting point for the algorithm. If the initialization is folded into the algo-
rithm it is impossible to use a partial solution or a violated invariant. Thus it is sometimes useful to
separate the initialization from the algorithm and offer an interface to the algorithm which does not
initialization (for the convenience of use, it may be useful to offer both interfaces: one which does
initialization and one which does no initialization).

Another advantage of the separated initialization is that the same initialization part can be used by
different algorithms (if initialization is desired): The augmenting path and the preflow-push algorithm
both initialize the network with a zero flow to create a valid flow.
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Applicability

Use an Initializer when

� the same initialization can be used by several different algorithms.

� an initialization is not always necessary (i.e. the initialization is used to set up a property which
is not used by the algorithm itself).

� there are different possible initializations from which the user of an algorithm may choose.

Consequences

Here are some of the consequences of using the Initializer pattern:

� An initialization algorithm has to be written only once even if it is used as initialization of
several different algorithms.

� The initialization is more flexible as the user can choose to use one of the predefined initializa-
tions or to write a specialized initialization which exactly suits the purpose.

� It is possible to generate a partial solution by a heuristic which is then used as a starting point
by the algorithm for speed ups.

� Properties guaranteed by the original algorithm but neither used by the algorithm nor by the user
of the algorithm are not necessarily established. This can safe run–time and make the algorithm
useful in situation where it is desired that some property is violated.

� Since there is not control over the initializer, the initializer may fail to establish an invariant
necessary for the proper operation of the algorithm. If possible, the algorithm should be im-
plemented to show some well defined behavior even if this case, making the algorithm more
complex.

4.3.3 Loop Kernel

Intent

Provide a possibility to insert additional code into the body of an algorithm and make the termination
condition of a loop more flexible.

Also Known As

Algorithmic Generators [9]

Motivation

Algorithms often contain central loops which need to be modified slightly by certain applications.
In addition it is often useful to have some control over the condition when the algorithm should
terminate. Consider e.g. a graph search algorithm: In its pure form it merely traverses through the
nodes of a graph but does nothing special with the nodes accessed. To become useful there has to be
some additional action: A path finding algorithm might store the node from which the current node
was reached and can terminate as soon as the two nodes between which a path has to be found are

65



reached. In contrast, a connectivity algorithm traverses through all nodes and gives each node a label
indicating when it was reached. However, both algorithms can use the same graph search algorithm
as subalgorithm.

An algorithm implemented as loop kernel consists of an object used to store the state of the algo-
rithm, some functions modifying the current state (i.e. advancing the algorithm) and some functions
used to query the current state. Hence, the algorithm does not solve the problem in one call but rather
operates in small steps. After each step the user may decide to terminate or preempt the algorithm.
Depending on the algorithm and the objective, it may also be useful to modify the problem while the
algorithm is active.

Applicability

Use a loop kernel when

� it makes sense to perform additional operations in each iteration of a loop.

� it should be possible to preempt the algorithm. Preempting an algorithm can be used e.g. to
apply multiple algorithms pseudo parallel.

� the condition to terminate the algorithm should be flexible.

Consequences

Here are some of the consequences when using a loop kernel:

� The control over the loop is transferred to the user: It can be terminated or preempted whenever
the user wishes to do so.

� In every iteration additional actions can be performed: The algorithm can be augmented or the
instance can be modified.

� The state of the algorithm has to be remembered so that the algorithm can continue again after
being suspended. However, when implementing the loop kernel the programmer has control
over the situations when to pass the control to the user.

� To be more useful, additional functions providing access to the current state of the algorithm
have to be provided.

Implementation

A loop kernel is mainly a loop found in an algorithm turned inside out: The loop is removed and
the control over the loop is passed to the user of the loop kernel. Thus, it is necessary to store the
state of the algorithm. The variables used in the scope of the loop become member variables of the
loop kernel. This includes the input of the algorithm and auxiliary data structures as well as the local
variables. When implementing the interface of the loop kernel, it has to be decided to which of the
members access is provided: To make the loop kernel useful, a user should be able to query and
potentially modify the current state the algorithm. For example, for a graph search algorithm it would
be reasonable to provide access to the current node and the container. An important part of the current
state of the loop kernel which has to be exported to the user, is an indication whether the algorithm is
finished or not.
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The style used to advance the algorithm is unknown the user. Thus, there has to be an operation
which advances the loop kernel. This corresponds to the stepping mechanism of the original loop.
Instead of being surrounded by a loop modifying the objects in the scope of the loop, each step is
performed in isolation (as seen from the algorithm) and works on member variables.

Apart from deciding on the interface of the loop kernel to query the current state, the transforma-
tion of a loop to a loop kernel is straight forward. What was used as initialization in the loop, becomes
construction and initialization of the loop kernel. This includes initialization of the members which
correspond to variables used by the loop. The body of the loop is what advances the loop kernel:
Applying an advance operation continues execution of the algorithm for iteration through the loop be-
fore the executation is stopped again. This can be divided into smaller parts than a complete iteration
through the loop to allow finer control. The termination condition becomes part of the interface of the
loop kernel which can be queried. In addition it may be used to protect the advance operation against
erroneous application when the algorithm is already terminated.
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Chapter 5

Conclusions

The concepts presented in Chapter 4 provide a rather new style for the implementation of graph
algorithms. Instead of implementing an algorithm tailored to a specific graph representation, it is
focussed on the implementation of the algorithm ignoring details of the graph representation. This is
done by using a set of powerful abstractions to access the graph representation: Linear iterators are
used to access the set of nodes and the set of edges, adjacency iterators are used to access the edges
incident to a node, and data accessors are used to access additional data associated with the nodes or
the edges. Apart from algorithms build upon these abstractions, modifiers can be used to change the
graph as it is seen by an algorithm: Without modifying the representation of a graph, the appearance
of a graph as seen by an algorithm is changed.

To implement algorithms as flexible as possible, they are implemented as classes and are separated
into different steps gathered in algorithm steps: Each of the algorithm used to implement a step can be
replaced individually by an algorithm tailored to the problem or the representation. In particular, the
initialization is separated from the main part of the algorithm because the same initialization can often
be used by different algorithms performing the same task. In addition, a general purpose initialization
often destroys already established results when an algorithm is used as subalgorithm by a more a
complex algorithm.

Using a loop kernel, it is possible to perform arbitrary additional actions in the body of an algo-
rithm. This can be used to add a condition for the termination of an algorithm, to preempt an algorithm,
to calculate some special output, or to modify the algorithm’s behavior. There are definitely other uses
of a loop kernel not mentioned, too.

Although there is some experience gained from some experimental implementations of algo-
rithms, it still has to be shown that use of the concepts presented in this work promotes reuse. It
is also necessary to determine the abstraction overhead imposed by the application of the data ab-
straction and the splitting of algorithms into small parts.
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